1 5 Ja n 20 12 Desorption of alkali atoms from 4 He nanodroplets

نویسنده

  • Marcel Drabbels
چکیده

The dynamics following the photoexcitation of Na and Li atoms located on the surface of helium nanodroplets has been investigated in a joint experimental and theoretical study. Photoelectron spectroscopy has revealed that excitation of the alkali atoms via the (n+ 1)s← ns transition leads to the desorption of these atoms. The mean kinetic energy of the desorbed atoms, as determined by ion imaging, shows a linear dependence on excitation frequency. These experimental findings are analyzed within a three-dimensional, time-dependent density functional approach for the helium droplet combined with a Bohmian dynamics description of the desorbing atom. This hybrid method reproduces well the key experimental observables. The dependence of the observables on the impurity mass is discussed by comparing the results obtained for the Li and Li isotopes. The calculations show that the desorption of the excited alkali atom is accompanied by the creation of highly non-linear density waves in the helium droplet that propagate at supersonic velocities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Desorption of alkali atoms from 4He nanodroplets.

The dynamics following the photoexcitation of Na and Li atoms located on the surface of helium nanodroplets has been investigated in a joint experimental and theoretical study. Photoelectron spectroscopy has revealed that excitation of the alkali atoms via the (n + 1)s ←ns transition leads to the desorption of these atoms. The mean kinetic energy of the desorbed atoms, as determined by ion imag...

متن کامل

Path integral Monte Carlo study of 4He clusters doped with alkali and alkali-earth ions.

Path integral Monte Carlo calculations of (4)He nanodroplets doped with alkali (Na(+), K(+) and Cs(+)) and alkali-earth (Be(+) and Mg(+)) ions are presented. We study the system at T = 1 K and between 14 and 128 (4)He atoms. For all studied systems, we find that the ion is well localized at the center of the droplet with the formation of a "snowball" of well-defined shells of localized (4)He at...

متن کامل

Alkali–helium exciplex formation on the surface of helium nanodroplets. I. Dispersed emission spectroscopy

Dispersed emission spectra collected upon the 4 P3/2,1/2←4 S1/2 optical excitation of K atoms attached to helium nanodroplets include broad, structured, red-shifted features which are shown to be due to K*He exciplex formation, paralleling our former observation of Na*He @J. Reho, C. Callegari, J. Higgins, W. E. Ernst, K. K. Lehmann, and G. Scoles, Discuss. Faraday Soc. 108, 161 ~1997!#. The ex...

متن کامل

Alkali–helium exciplex formation on the surface of helium nanodroplets. II. A time-resolved study

We have monitored the time evolution of the fluorescence of K*He exciplexes formed on the surface of helium nanodroplets using reversed time-correlated single photon counting. In modeling the present data and that from our previous work on Na*He, we find that partial spin–orbit coupling as well as the extraction energy of helium atoms from the droplet contribute to the observed dynamics of both...

متن کامل

Formation of K*He exciplexes on the surface of helium nanodroplets studied in real time.

Superfluid helium nanodroplets are doped with potassium atoms to form complexes with the alkali atom residing on the surface of the droplets. Dispersed laser-induced fluorescence spectra of such systems already revealed the formation of M(*)He ( M = Na,K) exciplexes upon electronic excitation [Reho et al., Faraday Discuss. 108, 161 (1997)]. By means of femtosecond pump-probe spectroscopy, this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013