Direct interpretation of near-field optical images.
نویسندگان
چکیده
The interpretation of the detection process in near-field optical microscopy is reviewed on the basis of a discussion about the possibility of establishing direct comparisons between experimental images and the solutions of Maxwell equations or the electromagnetic local density of states. On the basis of simple physical arguments, it is expected that the solutions of Maxwell equations should agree with images obtained by collecting mode near-field microscopes, while the electromagnetic local density of states should be considered to provide a practical interpretation of illumination mode near-field microscopes. We review collecting mode near-field microscope images where the conditions to obtain good agreement with the solutions of Maxwell equations have indeed been identified. In this context of collecting mode near-field microscopes, a fundamentally different functionality between dielectric and gold-coated tips has been clearly identified experimentally by checking against the solutions of Maxwell equations. It turns out that dielectric tips detect a signal proportional to the optical electric field intensity, whereas gold-coated tips detect a signal proportional to the optical magnetic field intensity. The possible implications of this surprising phenomenon are discussed.
منابع مشابه
Theoretical principles of near-field optical microscopies and spectroscopies
This review deals with the principles of near–field optical signals detected near a surface in a manner permitting the mapping of the distribution of the fields close to various kinds of illuminated samples surfaces. We begin with a discussion of the main physical properties of the optical fields near a surface in the absence of any detector. This mainly concerns phenomena involving evanescent ...
متن کاملAn overview of scanning near-field optical microscopy in characterization of nano-materials
Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...
متن کاملAn overview of scanning near-field optical microscopy in characterization of nano-materials
Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...
متن کاملDirect evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays.
This paper provides direct evidence for the role of surface plasmons in the enhanced optical transmission of light through metallic nanoscale hole arrays. Near-field optical images directly confirmed the presence of surface plasmons on gold nanohole arrays with interhole spacings larger than the surface plasmon wavelength. A simple interference model provides an intuitive explanation of the two...
متن کاملOptical content and resolution of near-field optical images: Influence of the operating mode
Recent experimental work has shown that the contrast of near-field optical images depends on the path followed by the tip during the scan. This artifact may misguide the interpretation of the images and the estimation of the optical resolution. We provide a rigorous theoretical study of this effect based on three-dimensional perturbation theory and two-dimensional exact numerical calculations. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of microscopy
دوره 202 Pt 2 شماره
صفحات -
تاریخ انتشار 2001