Automatic Genre Classification of Latin Music Using Ensemble of Classifiers
نویسندگان
چکیده
This paper presents a novel approach to the task of automatic music genre classification which is based on ensemble learning. Feature vectors are extracted from three 30-second music segments from the beginning, middle and end of each music piece. Individual classifiers are trained to account for each music segment. During classification, the output provided by each classifier is combined with the aim of improving music genre classification accuracy. Experiments carried out on a dataset containing 600 music samples from two Latin genres (Tango and Salsa) have shown that for the task of automatic music genre classification, the features extracted from the middle and end music segments provide better results than using the beginning music segment. Furthermore, the proposed ensemble method provides better accuracy than using single classifiers and any individual segment.
منابع مشابه
Sponsored by ISM 2008 Tenth IEEE International Symposium on Multimedia 15 - 17 December 2008 ● Berkeley , Californ a , USA
This paper presents the results of the application of a feature selection procedure to an automatic music genre classification system. The classification system is based on the use of multiple feature vectors and an ensemble approach, according to time and space decomposition strategies. Feature vectors are extracted from music segments from the beginning, middle and end of the original music s...
متن کاملشناسایی خودکار سبک موسیقی
Nowadays, automatic analysis of music signals has gained a considerable importance due to the growing amount of music data found on the Web. Music genre classification is one of the interesting research areas in music information retrieval systems. In this paper several techniques were implemented and evaluated for music genre classification including feature extraction, feature selection and m...
متن کاملTime-Space Ensemble Strategies for Automatic Music Genre Classification
In this paper we propose a novel time–space ensemble–based approach for the task of automatic music genre classification. Ensemble strategies employ several classifiers to different views of the problem– space, and combination rules in order to produce the final classification decision. In our approach we employ audio signal segmentation in time intervals and also problem space decomposition. I...
متن کاملA Feature Selection Approach for Automatic Music Genre Classification
In this paper we present an analysis of the suitability of four different feature sets which are currently employed to represent music signals in the context of the automatic music genre classification. To such an aim, feature selection is carried out through genetic algorithms, and it is applied to multiple feature vectors generated from different segments of the music signal. The feature sets...
متن کاملStochastic Text Models for Music Categorization
Music genre meta-data is of paramount importance for the organization of music repositories. People use genre in a natural way when entering a music store or looking into music collections. Automatic genre classification has become a popular topic in music information retrieval research. This work brings to symbolic music recognition some technologies, like the stochastic language models, alrea...
متن کامل