Artificial Neural Network for Transfer Function Placental Development: DCT and DWT Approach
نویسندگان
چکیده
The aim of our study is to propose an approach for transfer function placental development using ultrasound images. This approach is based to the selection of tissues, feature extraction by discrete cosine transform DCT, discrete wavelet transform DWT and classification of different grades of placenta by artificial neural network and especially the multi layer perceptron MLP. The proposed approach is tested for ultrasound images of placenta, resulting in 75% success rate of classification using DCT and 92% using DWT. The method based on multi resolution decomposition analysis and on supervised neural network technique MLP, seems a good method to study the transfer function of placental development in ultrasound.
منابع مشابه
AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملDWT to Classify Automatically the Placental Tissues Development: Neural Network Approach
Problem statement: This study proposed an approach for classification of placental tissues development using ultrasound images. Approach: This approach was based to the selection of tissues, feature extraction by discrete wavelet transform and classification by neural network and especially the Multi Layer Perceptron (MLP). Results: The proposed approach was tested for ultrasound placental imag...
متن کاملPrediction of the Liquid Vapor Pressure Using the Artificial Neural Network-Group Contribution Method
In this paper, vapor pressure for pure compounds is estimated using the Artificial Neural Networks and a simple Group Contribution Method (ANN–GCM). For model comprehensiveness, materials were chosen from various families. Most of materials are from 12 families. Vapor pressure data of 100 compounds is used to train, validate and test the ANN-GCM model. Va...
متن کاملPredicting the Coefficients of Antoine Equation Using the Artificial Neural Network (TECHNICAL NOTE)
Neural network is one of the new soft computing methods commonly used for prediction of the thermodynamic properties of pure fluids and mixtures. In this study, we have used this soft computing method to predict the coefficients of the Antoine vapor pressure equation. Three transfer functions of tan-sigmoid (tansig), log-sigmoid (logsig), and linear were used to evaluate the performance of diff...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کامل