Performance Comparison of Adaptive Filters with Kalman Filter for Speech Enhancement

نویسنده

  • Lalith Kumar
چکیده

The goal of this paper is to perform a performance analysis for speech enhancement using classical adaptive filters with kalman filter. In many applications like speech recognition, hearing aids, forensic applications and telephone conversations etc... As the enhancement of speech signals is of very important. The performance of the speech recognition system is also reduces if the speech signal is corrupted by noise. To remove the noise present in the speech signal, the adaptive filters shown the good improvement in increasing the Signal to Noise Ratio (SNR) values. The simulations are done using NOIZUES speech corpus for different SNR values using Least Mean Square (LMS), Normalized Least Mean Square (NLMS), Recursive Least Squares (RLS) and Kalman filter. From the results it is observed that kalman filter has shown good improvement in speech enhancement when compared to the other methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech Enhancement by Modified Convex Combination of Fractional Adaptive Filtering

This paper presents new adaptive filtering techniques used in speech enhancement system. Adaptive filtering schemes are subjected to different trade-offs regarding their steady-state misadjustment, speed of convergence, and tracking performance. Fractional Least-Mean-Square (FLMS) is a new adaptive algorithm which has better performance than the conventional LMS algorithm. Normalization of LMS ...

متن کامل

Adaptive Line Enhancement Using a Parallel IIR Filter with A Step-By-step Algorithm

 A step-by-step algorithm for enhancement of periodic signals that are highly corrupted by additive uncorrelated white gausian noise is proposed. In each adaptation step a new parallel second-order section is added to the previous filters. Every section has only one adjustable parameter, i.e., the center frequency of the self-tuning filter. The bandwidth and the convergence factor of each secti...

متن کامل

Utilizing Kernel Adaptive Filters for Speech Enhancement within the ALE Framework

Performance of the linear models, widely used within the framework of adaptive line enhancement (ALE), deteriorates dramatically in the presence of non-Gaussian noises. On the other hand, adaptive implementation of nonlinear models, e.g. the Volterra filters, suffers from the severe problems of large number of parameters and slow convergence. Nonetheless, kernel methods are emerging solutions t...

متن کامل

Speech Enhancement Using Adaptive Kalman Filter Combined With Perceptual Weighting Filter

The speech enhancement is one of the important techniques used to improve the quality of a speech signal i.e. degraded by noise. Speech enhancement using conventional kalman filter require calculating the parameters of AR (auto-regressive) model, and performing a lot of matrix operations, which is non-adaptive. In this paper the proposed method i.e. adaptive kalman filter combined with perceptu...

متن کامل

Fixed-point FPGA Implementation of a Kalman Filter for Range and Velocity Estimation of Moving Targets

Tracking filters are extensively used within object tracking systems in order to provide consecutive smooth estimations of position and velocity of the object with minimum error. Namely, Kalman filter and its numerous variants are widely known as simple yet effective linear tracking filters in many diverse applications. In this paper, an effective method is proposed for designing and implementa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012