Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in global DNA repair but exhibit normal transcription-coupled repair and enhanced UV resistance.
نویسندگان
چکیده
We investigated whether mutations in the p53 tumor suppressor gene alter UV sensitivity and/or repair of UV-induced DNA damage in primary human skin fibroblasts from patients with Li-Fraumeni syndrome, heterozygous for mutations in one allele of the p53 gene (p53 wt/mut) and sublines expressing only mutant p53 (p53 mut). The p53 mut cells were more resistant than the p53 wt/mut cells to UV cytotoxicity and exhibited less UV-induced apoptosis. DNA repair analysis revealed reduced removal of cyclobutane pyrimidine dimers from overall genomic DNA in vivo in p53 mut cells compared with p53 wt/mut or normal cells. However, p53 mut cells retained the ability to preferentially repair damage in the transcribed strands of expressed genes (transcription-coupled repair). These results suggest that loss of p53 function may lead to greater genomic instability by reducing the efficiency of DNA repair but that cellular resistance to DNA-damaging agents may be enhanced through elimination of apoptosis.
منابع مشابه
Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts.
We have shown previously that Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in the removal of UV-induced cyclobutane pyrimidine dimers from genomic DNA, but still proficient in the transcription-coupled repair pathway (Ford, J. M., and Hanawalt, P. C. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 8876-8880). We have now utilized monoclonal antibodies specific for cycl...
متن کاملRole of transcription-coupled DNA repair in susceptibility to environmental carcinogenesis.
Susceptibility to environmental carcinogenesis is the consequence of a complex interplay between intrinsic hereditary factors and actual exposures to potential carcinogenic agents. We must learn the nature of these interactions as well as the genetic defects that confer enhanced risk. In some genetic diseases an increased cancer risk correlates with a defect in the repair or replications of dam...
متن کاملp53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene.
The p53 tumor suppressor gene product is a transcription factor involved in cell-cycle regulation, apoptosis, and DNA repair. We and others have shown that p53 is required for efficient nucleotide excision repair (NER) of UV-induced DNA lesions. p53-deficient cells are defective in the repair of UV photoproducts in genomic DNA but proficient for transcription-coupled repair. Therefore, we exami...
متن کاملHuman cells compromised for p53 function exhibit defective global and transcription-coupled nucleotide excision repair, whereas cells compromised for pRb function are defective only in global repair.
After exposure to DNA-damaging agents, the p53 tumor suppressor protects against neoplastic transformation by inducing growth arrest and apoptosis. A series of investigations has also demonstrated that, in UV-exposed cells, p53 regulates the removal of DNA photoproducts from the genome overall (global nucleotide excision repair), but does not participate in an overlapping pathway that removes d...
متن کاملWildtype p53 is required for heat shock and ultraviolet light enhanced repair of a UV-damaged reporter gene.
We have previously reported the use of a recombinant nonreplicating adenovirus type 5, Ad5HCMVsp1 lacZ, expressing the lacZ gene under control of the human cytomegalovirus (HCMV) immediate early promoter to assess repair of a UV-damaged reporter gene in UV and heat shock (HS) treated cells. Heat shock and UV-enhanced reactivation (HSER and UVER) of beta-galactosidase (beta-gal) activity for UV-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 92 19 شماره
صفحات -
تاریخ انتشار 1995