Ideal triangle groups , dented tori , and numerical analysis By Richard

نویسندگان

  • Richard Evan Schwartz
  • RICHARD EVAN SCHWARTZ
چکیده

We prove the Goldman-Parker Conjecture: A complex hyperbolic ideal triangle group is discretely embedded in PU(2, 1) if and only if the product of its three standard generators is not elliptic. We also prove that such a group is indiscrete if the product of its three standard generators is elliptic. A novel feature of this paper is that it uses a rigorous computer assisted proof to deal with difficult geometric estimates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A better proof of the Goldman–Parker conjecture

The Goldman–Parker Conjecture classifies the complex hyperbolic C–reflection ideal triangle groups up to discreteness. We proved the Goldman–Parker Conjecture in [6] using a rigorous computer-assisted proof. In this paper we give a new and improved proof of the Goldman–Parker Conjecture. While the proof relies on the computer for extensive guidance, the proof itself is traditional. AMS Classifi...

متن کامل

Computation of Selberg Zeta Functions on Hecke Triangle Groups

In this paper, a heuristic method to compute the Selberg zeta function for Hecke triangle groups, Gq is described. The algorithm is based on the transfer operator method and an overview of the relevant background is given.We give numerical support for the claim that the method works and can be used to compute the Selberg Zeta function on Gq to any desired precision. We also present some numeric...

متن کامل

Omega Polynomial in Polybenzene Multi Tori

The polybenzene units BTX 48, X=A (armchair) and X=Z (zig-zag) dimerize forming “eclipsed” isomers, the oligomers of which form structures of five-fold symmetry, called multi-tori. Multi-tori can be designed by appropriate map operations. The genus of multi-tori was calculated from the number of tetrapodal units they consist. A description, in terms of Omega polynomial, of the two linearly peri...

متن کامل

Essential Dimension of Algebraic Tori

The essential dimension is a numerical invariant of an algebraic group G which may be thought of as a measure of complexity of G-torsors over fields. A recent theorem of N. Karpenko and A. Merkurjev gives a simple formula for the essential dimension of a finite p-group. We obtain similar formulas for the essential p-dimension of a broad class of groups, which includes all algebraic tori.

متن کامل

ESSENTIAL p-DIMENSION OF ALGEBRAIC TORI

The essential dimension is a numerical invariant of an algebraic group G which may be thought of as a measure of complexity of G-torsors over fields. A recent theorem of N. Karpenko and A. Merkurjev gives a simple formula for the essential dimension of a finite p-group. We obtain similar formulas for the essential p-dimension of a broader class of groups, which includes all algebraic tori.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001