Surface and buildup dose characteristics for 6, 10, and 18 MV photons from an Elekta Precise linear accelerator

نویسندگان

  • Eric E. Klein
  • Jacqueline Esthappan
  • Zuofeng Li
چکیده

Understanding head scatter characteristics of photon beams is vital to properly commission treatment planning (TP) algorithms. Simultaneously, having definitive surface and buildup region dosimetry is important to optimize bolus. The Elekta Precise linacs have unique beam flattening filter configurations for each photon beam (6, 10, and 18 MV) in terms of material and location. We performed a comprehensive set of surface and buildup dose measurements with a thin window parallel-plate (PP) chamber to examine effects of field size (FS), source-to-skin distance (SSD), and attenuating media. Relative ionization data were converted to fractional depth dose (FDD) after correcting for bias effects and using the Gerbi method to account for chamber characteristics. Data were compared with a similar vintage Varian linac. At short SSDs the surface and buildup dose characteristics were similar to published data for Varian and Elekta accelerators. The FDD at surface (FDD(0)) for 6, 10, and 18 MV photons was 0.171, 0.159, and 0.199, respectively, for a 15x15 cm2, 100 cm SSD field. A blocking tray increased FDD(0) to 0.200, 0.200, and 0.256, while the universal wedge decreased FDD(0) to 0.107, 0.124, and 0.176. FDD(0) increased linearly with FS (approximately 1.16%/cm). FDD(0) decreased exponentially for 10 and 18 MV with increasing SSD. However, the 6 MV FDD(0) actually increased slightly with increasing SSD. This is likely due to the unique distal flattening filter for 6 MV. The measured buildup curves have been used to optimize TP calculations and guide bolus decisions. Overall the FDD(0) and buildup doses were very similar to published data. Of interest were the relatively low 10 MV surface doses, and the 6 MV FDD(0)'s dependence on SSD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developement a simple point source model for Elekta SL-25 linear accelerator using MCNP4C Monte Carlo code

Background: Monte Carlo (MC) modeling of a linear accelerator is a prerequisite for Monte Carlo dose calculations in external beam radiotherapy. In this study, a simple and efficient model was developed for Elekta SL-25 linear accelerator using MCNP4C Monte Carlo code Materials and methods: The head of Elekta SL-25 linac was simulated for 6 and 18 MV photon beams using MCNP4C MC code. Energ...

متن کامل

Investigations of parameters affecting the photon energy spectra of an 18 MV Varian 2100C/D linear accelerator

Radiotherapy using linear accelerators is known as an effective modality for cancer treatment. The photons energy of treatment beams significantly affect the dose distribution. Therefore, it is important to accurately evaluate the photon energy spectra. In this study, MCNPX Monte Carlo code (version 2.6.0) was used to simulate an 18 MV photon beam of a Varian 2100C/D linear accelerator. By matc...

متن کامل

محاسبه میزان دز پرتوهای ترمزی ناشی از الکترون ها در پرتو درمانی با الکترون در بیمارستان آیت ا...خوانساری اراک

During the radiation therapy with electron beam, due to electron interaction and scattering from structures of the head of the medical linear accelerator, unwanted photons are produced. The main contribution of the photon contamination is resulted from the various components of the medical linear accelerator on the way of the high energy electron beam, and few percent is due to the interaction ...

متن کامل

The Effect of Field Size and Distance from the Field Center on Neutron Contamination in Medical Linear Accelerator

Objective: Using Megavoltage photons generated by medical linear accelerator is a common modality for the treatment of malignant. The crucial problem for using photon beams >8MV is the photoneutron yields that increase the risk of secondary cancer that treated with high-energy photon beams. The contaminated neutrons produced in different components of the accelerator head and rely on many param...

متن کامل

Monte Carlo Modeling of the Elekta Precise Linear Accelerator: Validation of Dose Distribution in a Heterogeneous Water Phantom

The present work is devoted to develop a computational model using the Monte Carlo code MCNP5 (Monte Carlo N-Particle) for the simulation of a 6 MV photon beam given by Elekta Precise medical linear accelerator treatment head. The model includes the major components of the multileaf accelerator head and a cube-shaped water tank. Calculations were performed for a photon beam with 10 cm x 10 cm i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2003