Merging high doxorubicin loading with pronounced magnetic response and bio-repellent properties in hybrid drug nanocarriers.

نویسندگان

  • Aristides Bakandritsos
  • Aristeidis Papagiannopoulos
  • Eleni N Anagnostou
  • Konstantinos Avgoustakis
  • Radek Zboril
  • Stergios Pispas
  • Jiri Tucek
  • Vasyl Ryukhtin
  • Nikolaos Bouropoulos
  • Argiris Kolokithas-Ntoukas
  • Theodore A Steriotis
  • Uwe Keiderling
  • Frank Winnefeld
چکیده

Hybrid magnetic drug nanocarriers are prepared via a self-assembly process of poly(methacrylic acid)-graft-poly(ethyleneglycol methacrylate) (p(MAA-g-EGMA)) on growing iron oxide nanocrystallites. The nanocarriers successfully merge together bio-repellent properties, pronounced magnetic response, and high loading capacity for the potent anticancer drug doxorubicin (adriamicin), in a manner not observed before in such hybrid colloids. High magnetic responses are accomplished by engineering the size of the magnetic nanocrystallites (∼13.5 nm) following an aqueous single-ferrous precursor route, and through adjustment of the number of cores in each colloidal assembly. Complementing conventional magnetometry, the magnetic response of the nanocarriers is evaluated by magnetophoretic experiments providing insight into their internal organization and on their response to magnetic manipulation. The structural organization of the graft-copolymer, locked on the surface of the nanocrystallites, is further probed by small-angle neutron scattering on single-core colloids. Analysis showed that the MAA segments selectively populate the area around the magnetic nanocrystallites, while the poly(ethylene glycol)-grafted chains are arranged as protrusions, pointing towards the aqueous environment. These nanocarriers are screened at various pHs and in highly salted media by light scattering and electrokinetic measurements. According to the results, their stability is dramatically enhanced, as compared to uncoated nanocrystallites, owing to the presence of the external protective PEG canopy. The nanocarriers are also endowed with bio-repellent properties, as evidenced by stability assays using human blood plasma as the medium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thiol-functionalized mesoporous silica as nanocarriers for anticancer drug delivery

The present study deals with the synthesis andfunctionalization of mesoporous silica nanoparticles as drug delivery platforms. SBA-15 nanorods with high surface area (1010 m2g-1) were functionalized by post grafting method using 3-mercaptopropyl trimethoxysilane (MPTS). The parent and thiol-functionalized SBA-15 nanorods were used as nanocarriers for an anticancer drug (gemcitabine). The charac...

متن کامل

Thiol-functionalized mesoporous silica as nanocarriers for anticancer drug delivery

The present study deals with the synthesis andfunctionalization of mesoporous silica nanoparticles as drug delivery platforms. SBA-15 nanorods with high surface area (1010 m2g-1) were functionalized by post grafting method using 3-mercaptopropyl trimethoxysilane (MPTS). The parent and thiol-functionalized SBA-15 nanorods were used as nanocarriers for an anticancer drug (gemcitabine). The charac...

متن کامل

Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy.

Hydrophobically modified maghemite (γ-Fe(2)O(3)) nanoparticles were encapsulated within the membrane of poly(trimethylene carbonate)-b-poly(l-glutamic acid) (PTMC-b-PGA) block copolymer vesicles using a nanoprecipitation process. This formation method gives simple access to highly magnetic nanoparticles (MNPs) (loaded up to 70 wt %) together with good control over the vesicles size (100-400 nm)...

متن کامل

Green synthesis of Iron oxide nanoparticles using carum carvi L. and modified with chitosan in order to optimize the anti-cancer drug adsorption

Magnetic iron oxide nanoparticles have gained a lot of attention in drug delivery systems because they can control a drug pathway to deliver it to the specific site under a magnetic field which is related to their magnetic core and surface coating. Chitosan-coated FeNPs, have prominent antimicrobial and biological properties that make chitosan a promising biopolymer for drug delivery applicatio...

متن کامل

Green synthesis of Iron oxide nanoparticles using carum carvi L. and modified with chitosan in order to optimize the anti-cancer drug adsorption

Magnetic iron oxide nanoparticles have gained a lot of attention in drug delivery systems because they can control a drug pathway to deliver it to the specific site under a magnetic field which is related to their magnetic core and surface coating. Chitosan-coated FeNPs, have prominent antimicrobial and biological properties that make chitosan a promising biopolymer for drug delivery applicatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Small

دوره 8 15  شماره 

صفحات  -

تاریخ انتشار 2012