Influence of Whole-Body Electrostimulation on Human Red Blood Cell Deformability.

نویسندگان

  • Andre Filipovic
  • Heinz Kleinöder
  • Denise Plück
  • Wildor Hollmann
  • Wilhelm Bloch
  • Marijke Grau
چکیده

Red blood cell-nitric oxide synthase (RBC-NOS)-dependent NO production is essential for the maintenance of RBC deformability, which is known to improve oxygen supply to the working tissue. Electrostimulation of the whole body (WB-EMS) has been shown to improve maximal strength, springiness, and jumping power of trained and untrained athletes. To examine whether these 2 parameters are associated, this study, for the first time, aimed to investigate the effects of an 18-week dynamic WB-EMS program on RBC deformability in addition to maximal strength performance (1 repetition maximum [1RM]) in elite soccer players. Fifteen test persons were assigned in either WB-EMS group (EG, n = 10) or training group (TG, n = 5). Next to their weekly training sessions, EG performed 3 × 10 squat jumps under the influence of WB-EMS twice per week between weeks 1 and 14 and once per week between weeks 14 and 18. Training group only performed 3 × 10 squat jumps. Performance was assessed by a maximal strength test on the leg press machine (1RM). Subjects were tested at baseline and after weeks 7, 14, and 18 with blood sampling before (Pre), 15-30 minutes after (Post), and 24 hours after (24-hour Post) the training. The results showed that maximal strength was significantly improved in EG (p < 0.01). Maximum RBC deformability (EImax) increased on EMS stimulus in EG while it remained unaffected in the TG. Acute increase in EImax at baseline was explained by an increase in RBC-NOS activation while chronic increase of deformability must be caused by different, yet unknown, mechanisms. EImax decreased between weeks 14 and 18 suggesting that 1 WB-EMS session per week is not sufficient to alter deformability (EImax). In contrast, the deformability at low shear stress (EI 3 Pa), comparable with conditions found in the microcirculation, significantly increased in EG until week 14, whereas in TG deformability only, increased until week 7 due to increasing training volume after the winter break. The results indicate that WB-EMS represents a useful and time-saving addition to conventional training sessions to improve RBC deformability and possibly oxygen supply to the working tissue and thus promoting general force components in high performance sport.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Heinz bodies on red cell deformability.

Decreased deformability of acetyldamaged cells, in an all-or-none phenylhydrazine-treated erythrocytes, fashion. In mixtures, separation of unmeasured by in vitro filtration experitreated cells from Heinz body-containments, was found to parallel Heinz ing erythrocytes could be accombody formation. The decreased deplished by filtration. There may be a formability seemed unrelated to merelationsh...

متن کامل

Increased red blood cell deformability due to isoxsuprine administration decreases platelet adherence in a perfusion chamber: a double-blind cross-over study in patients with intermittent claudication.

Platelet transport towards the vessel wall is influenced by the hematocrit, red blood cell (RBC) size, and shape. Recent in vitro studies have indicated that RBC deformability may also influence platelet transport. The observation that isoxsuprine, a known vasodilating drug, caused increased RBC deformability in vitro and decreased platelet transport in vitro prompted us to study the effects of...

متن کامل

Measurement Techniques for Red Blood Cell Deformability: Recent Advances

Human red blood cells (RBCs) or erythrocytes have remarkable deformability. Upon external forces, RBCs undergo large mechanical deformation without rupture, and they restore to original shapes when released. The deformability of RBCs plays crucially important roles in the main function of RBCs oxygen transport through blood circulation. RBCs must withstand large deformations during repeated pas...

متن کامل

Comparative rheology of human and trout red blood cells.

We have studied the comparative rheology of individual red blood cells from humans and rainbow trout (Oncorhynchus mykiss) at their natural body temperatures. Trout red blood cells were large ellipsoids (about 16 microns x 11.5 microns x 2.5 microns) with a mean volume of 250 fl, a surface area of approximately 350 microns 2 and an elongated nucleus of about 9 microns x 5 microns. Although much...

متن کامل

Rheological properties of blood after whole body gamma-irradiation

Background: The study of rheological properties of blood has special interest since it is a circulating fluid exposed to shear rates during its life time. This work aims to investigate the influence of whole body gamma irradiation on the rheological properties of rat’s blood. The applied shear rate was from 12 to 375 s-1. Low shear viscosity (up to 100 s-1) depends mainly on the erythroc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of strength and conditioning research

دوره 29 9  شماره 

صفحات  -

تاریخ انتشار 2015