Characters of finite quasigroups VII: permutation characters
نویسندگان
چکیده
Each homogeneous space of a quasigroup affords a representation of the BoseMesner algebra of the association scheme given by the action of the multiplication group. The homogeneous space is said to be faithful if the corresponding representation of the Bose-Mesner algebra is faithful. In the group case, this definition agrees with the usual concept of faithfulness for transitive permutation representations. A permutation character is associated with each quasigroup permutation representation, and specialises appropriately for groups. However, in the quasigroup case the character of the homogeneous space determined by a subquasigroup need not be obtained by induction from the trivial character on the subquasigroup. The number of orbits in a quasigroup permutation representation is shown to be equal to the multiplicity with which its character includes the trivial character.
منابع مشابه
The Table of Characters of Some Quasigroups
It is known that (Zn,−n) are examples of entropic quasigroups which are not groups. In this paper we describe the table of characters for quasigroups (Zn,−n).
متن کاملFinding Possible Permutation Characters
We describe three different methods to compute all those characters of a finite group that have certain properties of transitive permutation characters. First, a combinatorial approach can be used to enumerate vectors of multiplicities. Secondly, these characters can be found as certain integral solutions of a system of inequalities. Thirdly, they are calculated via Gaussian elimination. The me...
متن کاملFinite Groups, Designs and Codes
Introduction Terminology and notation Group Actions and Permutation Characters Method 1 References Finite Groups, Designs and Codes J Moori School of Mathematical Sciences, University of KwaZulu-Natal Pietermaritzburg 3209, South Africa ASI, Opatija, 31 May –11 June 2010 J Moori, ASI 2010, Opatija, Croatia Groups, Designs and Codes Abstract Introduction Terminology and notation Group Actions an...
متن کاملQUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...
متن کاملOn the Mark and Markaracter Tables of Finite Groups
Let G be a finite group and C(G) be the family of representative conjugacy classes of subgroups of G. The matrix whose H,K-entry is the number of fixed points of the set G/K under the action of H is called the table of marks of G where H,K run through all elements in C(G). Shinsaku Fujita for the first time introduced the term “markaracter” to discuss marks for permutation representati...
متن کامل