Roles of epidermal growth factor receptor activation in epithelial cell repair and mucin production in airway epithelium.
نویسندگان
چکیده
The epithelial cells lining the airways serve protective functions. The "barrier function" of the epithelium protects the individual from damage by inhaled irritants. The epithelium produces mucins which become hydrated and form a viscoelastic gel which spreads over the epithelial surface. In healthy individuals inhaled foreign materials become entrapped in the mucus and are cleared by mucociliary transport and by coughing. In many chronic inflammatory airway diseases, however, excessive mucus is produced and is inadequately cleared, leading to mucous obstruction and infection. At present there is no specific treatment for hypersecretion. However, the discovery that an epidermal growth factor receptor (EGFR) cascade is involved in mucin production by a wide variety of stimuli suggests that blockade may provide specific treatment for hypersecretory diseases. EGFR pathways have also been implicated in the repair of damaged airway epithelium. The roles of EGFR in airway epithelial cell hypersecretion and epithelial damage and repair are reviewed and future potential treatments are suggested.
منابع مشابه
OCCASIONAL REVIEW Roles of epidermal growth factor receptor activation in epithelial cell repair and mucin production in airway epithelium
The epithelial cells lining the airways serve protective functions. The ‘‘barrier function’’ of the epithelium protects the individual from damage by inhaled irritants. The epithelium produces mucins which become hydrated and form a viscoelastic gel which spreads over the epithelial surface. In healthy individuals inhaled foreign materials become entrapped in the mucus and are cleared by mucoci...
متن کاملEpidermal growth factor receptor-mediated innate immune responses and their roles in airway diseases.
Inhaled air is contaminated with pathogens and particulates that may deposit in the airways and damage the host. In response to these invaders, the airway epithelium has developed innate immune responses that provide a defence against the invaders and protect the airway structure and function. Thus, the epithelium of conducting airways becomes the "battleground" between the invaders and the hos...
متن کاملNeutrophil defensins enhance lung epithelial wound closure and mucin gene expression in vitro.
Human airways are frequently exposed to potentially harmful agents that cause tissue injury. Upon such injury, a repair process is initiated that comprises cell migration, proliferation, and differentiation. We have previously shown that human neutrophil defensins (human neutrophil peptides 1-3 [HNP1-3]) induce airway epithelial cell proliferation. Because of the role of cell proliferation in e...
متن کاملNeutrophil elastase induces mucin production by ligand-dependent epidermal growth factor receptor activation.
Neutrophil products are implicated in hypersecretory airway diseases. To determine the mechanisms linking a proteolytic effect of human neutrophil elastase (HNE) and mucin overproduction, we examined the effects of HNE on MUC5AC mucin production in human airway epithelial (NCI-H292) cells. Stimulation with HNE for 5-30 min induced MUC5AC production 24 h later, which was prevented by HNE serine ...
متن کاملEpithelial-mesenchymal interactions in the pathogenesis of asthma.
During lung development, repair, and inflammation, local production of cytokines (eg, transforming growth factor-beta) and growth factors (eg, epidermal growth factor) by epithelial and mesenchymal cells mediate bidirectional growth control effectively creating an epithelial-mesenchymal trophic unit. In asthma the bronchial epithelium is highly abnormal, with structural changes involving separa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Thorax
دوره 59 11 شماره
صفحات -
تاریخ انتشار 2004