Homeostasis of glutathione is associated with polyamine-mediated β-lactam susceptibility in Acinetobacter baumannii ATCC 19606.

نویسندگان

  • Dong H Kwon
  • Saboor Hekmaty
  • Gomattie Seecoomar
چکیده

Glutathione is a tripeptide (l-γ-glutamyl-l-cysteinyl-glycine) thiol compound existing in many bacteria and maintains a proper cellular redox state, thus protecting cells against toxic substances such as reactive oxygen species. Polyamines (spermine and spermidine) are low-molecular-weight aliphatic polycations ubiquitously presenting in all living cells and modulate many cellular functions. We previously reported that exogenous polyamines significantly enhanced β-lactam susceptibility of β-lactam-associated multidrug-resistant Acinetobacter baumannii. In this study, three genes differentially associated with the polyamine effects on β-lactam susceptibility were identified by transposon mutagenesis of A. baumannii ATCC 19606. All three genes encoded components of membrane transport systems. Inactivation of one of the genes encoding a putative glutathione transport ATP-binding protein increased the accumulation of intracellular glutathione (∼150 to ∼200%) and significantly decreased the polyamine effects on β-lactam susceptibility in A. baumannii ATCC 19606. When the cells were grown with polyamines, the levels of intracellular glutathione in A. baumannii ATCC 19606 significantly decreased from ∼0.5 to ∼0.2 nmol, while the levels of extracellular glutathione were correspondingly increased. However, the levels of total glutathione (intra- plus extracellular) were unchanged when the cells were grown with or without polyamines. Overall, these results suggest that exogenous polyamines induce glutathione export, resulting in decreased levels of intracellular glutathione, which may produce an improper cellular redox state that is associated with the polyamine-mediated β-lactam susceptibility of A. baumannii. This finding may provide a clue for development of new antimicrobial agents and/or novel strategies to treat multidrug-resistant A. baumannii.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutations Decreasing Intrinsic β-Lactam Resistance Are Linked to Cell Division in the Nosocomial Pathogen Acinetobacter baumannii.

Transposon mutagenesis was used to identify novel determinants of intrinsic β-lactam resistance in Acinetobacter baumannii An EZ-Tn5 transposon insertion in a gene corresponding to the A1S_0225 sequence resulted in a 4-fold decrease in resistance to ampicillin, cefotaxime, imipenem, and ceftriaxone but did not alter resistance to other classes of antibiotics. Based on this phenotype, the gene w...

متن کامل

Analysis of penicillin-binding proteins (PBPs) in carbapenem resistant Acinetobacter baumannii

BACKGROUND & OBJECTIVES Acinetobacter baumannii is a Gram-negative, cocco-bacillus aerobic pathogen responsible for nosocomial infections in hospitals. In the recent past A. baumannii had developed resistance against β-lactams, even against carbapenems. Penicillin-binding proteins (PBPs) are crucial for the cell wall biosynthesis during cell proliferation and these are the target for β-lactams....

متن کامل

Draft Genome Assembly of Acinetobacter baumannii ATCC 19606

Acinetobacter baumannii is an emerging nosocomial pathogen, and therefore high-quality genome assemblies for this organism are needed to aid in detection, diagnostic, and treatment technologies. Here we present the improved draft assembly of A. baumannii ATCC 19606 in two scaffolds. This 3,953,621-bp genome contains 3,750 coding regions and has a 39.1% G+C content.

متن کامل

The Success of Acinetobacter Species; Genetic, Metabolic and Virulence Attributes

An understanding of why certain Acinetobacter species are more successful in causing nosocomial infections, transmission and epidemic spread in healthcare institutions compared with other species is lacking. We used genomic, phenotypic and virulence studies to identify differences between Acinetobacter species. Fourteen strains representing nine species were examined. Genomic analysis of six st...

متن کامل

Stress response and virulence functions of the Acinetobacter baumannii NfuA Fe-S scaffold protein.

To successfully establish an infection, Acinetobacter baumannii must overcome the iron starvation and oxidative stress imposed by the human host. Although previous studies have shown that ATCC 19606(T) cells acquire iron via the acinetobactin-mediated siderophore system, little is known about intracellular iron metabolism and its relation to oxidative stress in this pathogen. Screening of an in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 57 11  شماره 

صفحات  -

تاریخ انتشار 2013