Determining variability of ophthalmic arterial Doppler signals using Lyapunov exponents

نویسندگان

  • Elif Derya Übeyli
  • Inan Güler
چکیده

The new method presented in this study was directly based on the consideration that ophthalmic arterial Doppler signals are chaotic signals. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. Multilayer perceptron neural network (MLPNN) architecture was formulated and used as a basis for determining variabilities such as stenosis, ocular Behcet disease, and uveitis disease in the physical state of ophthalmic arterial Doppler signals. The computed Lyapunov exponents of the ophthalmic arterial Doppler signals were used as inputs of the MLPNN. Receiver operating characteristic (ROC) curve was used to assess the performance of the detection process. The ophthalmic arterial Doppler signals were classified with the accuracy varying from 93.75% to 97.06%. The results confirmed that the proposed MLPNN trained with Levenberg-Marquardt algorithm has potential in detecting stenosis, Behcet disease and uveitis disease in ophthalmic arteries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting variability of internal carotid arterial Doppler signals by Lyapunov exponents.

The new method presented in this study was directly based on the consideration that internal carotid arterial Doppler signals are chaotic signals. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. Multilayer perceptron neural network (MLPNN) architecture was formulated and used as a basis for detecting variabilities such a...

متن کامل

Detection of ophthalmic arterial doppler signals with Behcet disease using multilayer perceptron neural network

Doppler ultrasound is known as a reliable technique, which demonstrates the flow characteristics and resistance of ophthalmic arteries. In this study, ophthalmic arterial Doppler signals were obtained from 106 subjects, 54 of whom suffered from ocular Behcet disease while the rest were healthy subjects. Multilayer perceptron neural network (MLPNN) employing delta-bar-delta training algorithm wa...

متن کامل

Application of classical and model-based spectral methods to ophthalmic arterial Doppler signals with uveitis disease

In this study, Doppler signals recorded from ophthalmic artery of 75 subjects were processed by PC-computer using classical and model-based methods. The classical method (fast Fourier transform) and three model-based methods (Burg autoregressive, moving average, least-squares modified Yule-Walker autoregressive moving average methods) were selected for processing ophthalmic arterial Doppler sig...

متن کامل

Nonlinear dynamic analysis of mitral valve doppler signals: surrogate data analysis

In our study, the nonlinear dynamics of mitral valve Doppler signals from 32 healthy and 28 patients with mitral valve stenosis was evaluated using by the computation of Lyapunov exponents, correlation dimension values and surrogate data analysis. Two chaotic features are compared for healthy and patient subjects. It was found that the largest Lyapunov exponent and correlation dimension values ...

متن کامل

Spectral broadening of ophthalmic arterial Doppler signals using STFT and wavelet transform

In this study, short-time Fourier transform (STFT) and wavelet transform (WT) were used for spectral analysis of ophthalmic arterial Doppler signals. Using these spectral analysis methods, the variations in the shape of the Doppler spectra as a function of time were presented in the form of sonograms in order to obtain medical information. These sonograms were then used to compare the applied m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers in biology and medicine

دوره 35 5  شماره 

صفحات  -

تاریخ انتشار 2005