Knockdown of Indy/CeNac2 extends Caenorhabditis elegans life span by inducing AMPK/aak-2

نویسندگان

  • Franziska Schwarz
  • Zehra Karadeniz
  • Antje Fischer-Rosinsky
  • Diana M. Willmes
  • Joachim Spranger
  • Andreas L. Birkenfeld
چکیده

Reducing the expression of the Indy (Acronym for 'I'm Not Dead, Yet') gene in lower organisms promotes longevity and leads to a phenotype that resembles various aspects of caloric restriction. In C. elegans, the available data on life span extension is controversial. Therefore, the aim of this study was to determine the role of the C. elegans INDY homolog CeNAC2 in life span regulation and to delineate possible molecular mechanisms. siRNA against Indy/CeNAC2 was used to reduce expression of Indy/CeNAC2. Mean life span was assessed in four independent experiments, as well as whole body fat content and AMPK activation. Moreover, the effect of Indy/CeNAC2 knockdown in C. elegans with inactivating variants of AMPK (TG38) was studied. Knockdown of Indy/CeNAC2 increased life span by 22±3 % compared to control siRNA treated C. elegans, together with a decrease in whole body fat content by ~50%. Indy/CeNAC2 reduction also increased the activation of the intracellular energy sensor AMPK/aak2. In worms without functional AMPK/aak2, life span was not extended when Indy/CeNAC2 was reduced. Inhibition of glycolysis with deoxyglucose, an intervention known to increase AMPK/aak2 activity and life span, did not promote longevity when Indy/CeNAC2 was knocked down. Together, these data indicate that reducing the expression of Indy/CeNAC2 increases life span in C. elegans, an effect mediated at least in part by AMPK/aak2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Caenorhabditis elegans AMP-activated protein kinase AAK-2 is phosphorylated by LKB1 and is required for resistance to oxidative stress and for normal motility and foraging behavior.

AAK-2 is one of two alpha isoforms of the AMP-activated protein kinase in Caenorhabditis elegans and is involved in life span maintenance, stress responses, and germ cell cycle arrest upon dauer entry. We found that AAK-2 was phosphorylated at threonine 243 in response to paraquat treatment and that this phosphorylation depends on PAR-4, the C. elegans LKB1 homologue. Both aak-2 mutation and pa...

متن کامل

Mg2+ Extrusion from Intestinal Epithelia by CNNM Proteins Is Essential for Gonadogenesis via AMPK-TORC1 Signaling in Caenorhabditis elegans

Mg2+ serves as an essential cofactor for numerous enzymes and its levels are tightly regulated by various Mg2+ transporters. Here, we analyzed Caenorhabditis elegans strains carrying mutations in genes encoding cyclin M (CNNM) Mg2+ transporters. We isolated inactivating mutants for each of the five Caenorhabditis elegans cnnm family genes, cnnm-1 through cnnm-5. cnnm-1; cnnm-3 double mutant wor...

متن کامل

D-Glucosamine supplementation extends life span of nematodes and of ageing mice

D-Glucosamine (GlcN) is a freely available and commonly used dietary supplement potentially promoting cartilage health in humans, which also acts as an inhibitor of glycolysis. Here we show that GlcN, independent of the hexosamine pathway, extends Caenorhabditis elegans life span by impairing glucose metabolism that activates AMP-activated protein kinase (AMPK/AAK-2) and increases mitochondrial...

متن کامل

Calcineurin Antagonizes AMPK to Regulate Lipolysis in Caenorhabditis elegans.

Calcineurin is a calcium- and calmodulin-dependent serine/threonine protein phosphatase, and the target of immunosuppressive agent tacrolimus (TAC). The dysfunction of calcineurin, or clinical applications of tacrolimus, have been reported to be associated with dyslipidemia. The underlying mechanisms of calcineurin and tacrolimus in lipid metabolism are largely unknown. Here, we showed that mut...

متن کامل

Screening of isoquinoline alkaloids for potent lipid metabolism modulation with Caenorhabditis elegans.

Metabolic syndrome and related disorders are increasingly prevalent in contemporary society, and thus pose the need for potent agents to control lipid accumulation in the body. This study indicates that Caenorhabditis elegans was effective in screening for potent lipid metabolism modulators with berberine as a model compound. Among the various isoquinoline alkaloids tested, sanguinarine, a benz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015