Commutator Theory for Loops

نویسنده

  • DAVID STANOVSKÝ
چکیده

Using the Freese-McKenzie commutator theory for congruence modular varieties as the starting point, we develop commutator theory for the variety of loops. The fundamental theorem of congruence commutators for loops relates generators of the congruence commutator to generators of the total inner mapping group. We specialize the fundamental theorem into several varieties of loops, and also discuss the commutator of two normal subloops. Consequently, we argue that some standard definitions of loop theory, such as elementwise commutators and associators, should be revised and linked more closely to inner mappings. Using the new definitions, we prove several natural properties of loops that could not be so elegantly stated with the standard definitions of loop theory. For instance, we show that the subloop generated by the new associators defined here is automatically normal. We conclude with a preliminary discussion of abelianess and solvability in loops.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nilpotency and Dimension Series for Loops

We take a step towards the development of a nilpotency theory for loops based on the commutatorassociator filtration instead of the lower central series. This nilpotency theory shares many essential features with the associative case. In particular, we show that the isolator of the nth commutator-associator subloop coincides with the nth dimension subloop over a field of characteristic zero. Th...

متن کامل

A History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids

This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...

متن کامل

Abelian Extensions and Solvable Loops

Based on the recent development of commutator theory for loops, we provide both syntactic and semantic characterization of abelian normal subloops. We highlight the analogies between well known central extensions and central nilpotence on one hand, and abelian extensions and congruence solvability on the other hand. In particular, we show that a loop is congruence solvable (that is, an iterated...

متن کامل

A generalization of the probability that the commutator of two group elements is equal to a given element

The probability that the commutator of two group elements is equal to a given element has been introduced in literature few years ago. Several authors have investigated this notion with methods of the representation theory and with combinatorial techniques. Here we illustrate that a wider context may be considered and show some structural restrictions on the group.

متن کامل

A Quantum Goldman Bracket for Loops on Surfaces

In the context of (2+1)–dimensional gravity, we use holonomies of constant connections which generate a q–deformed representation of the fundamental group to derive signed area phases which relate the quantum matrices assigned to homotopic loops. We use these features to determine a quantum Goldman bracket (commutator) for intersecting loops on surfaces, and discuss the resulting quantum geometry.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013