Dual effects of duplex RNA harboring 5'-terminal triphosphate on gene silencing and RIG-I mediated innate immune response.
نویسندگان
چکیده
Duplex RNA harboring the 5'-terminal triphosphate RNA is hypothesized to not only execute selective gene silencing via RNA interference, but also induce type I interferon (IFN) through activation of the retinoic acid inducible gene I (RIG-I). We evaluated gene silencing efficacy of the shRNA containing 5'-triphosphate (3p-shRNA) targeting the hepatitis C virus (HCV) RNA genome in hepatic cells. Gene silencing efficacy of the 3p-shRNA was diminished due to the presence of the 5'-triphosphate moiety in shRNA, whereas the shRNA counterpart without 5'-triphosphate (HO-shRNA) showed a strong antiviral activity without significant induction of type I IFN in the cells. 3p-shRNA was observed to be a better activator of the RIG-I signaling than the HO-shRNA with an elevated induction of type I IFN in cells that express RIG-I. Taken together, we suggest that competition for the duplex RNA bearing 5'-triphosphate between RIG-I and RNA interference factors may compromise efficacy of selective gene silencing.
منابع مشابه
Defining the functional determinants for RNA surveillance by RIG-I
Retinoic acid-inducible gene-I (RIG-I) is an intracellular RNA sensor that activates the innate immune machinery in response to infection by RNA viruses. Here, we report the crystal structure of distinct conformations of a RIG-I:dsRNA complex, which shows that HEL2i-mediated scanning allows RIG-I to sense the length of RNA targets. To understand the implications of HEL2i scanning for catalytic ...
متن کاملDependence of RIG-I Nucleic Acid-Binding and ATP Hydrolysis on Activation of Type I Interferon Response
Exogenous nucleic acids induce an innate immune response in mammalian host cells through activation of the retinoic acid-inducible gene I (RIG-I). We evaluated RIG-I protein for RNA binding and ATPase stimulation with RNA ligands to investigate the correlation with the extent of immune response through RIG-I activation in cells. RIG-I protein favored blunt-ended, double-stranded RNA (dsRNA) lig...
متن کاملRIG-I dependent sensing of poly(dA-dT) via the induction of an RNA polymerase III transcribed RNA intermediate
Viral RNA is sensed by TLR 7 and 8 or by the RNA helicases LGP2, MDA5 and RIG-I to trigger antiviral responses. Much less is known about sensors for DNA. Here we identify a novel DNA sensing pathway involving RNA polymerase III and RIG-I. AT-rich dsDNA serve as a template for RNA polymerase III, which is transcribed into dsRNA harboring a 5′ triphosphate moiety which signals via RIG-I to activa...
متن کاملThe regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA
RIG-I and MDA5 sense cytoplasmic viral RNA and set-off a signal transduction cascade, leading to antiviral innate immune response. The third RIG-I-like receptor, LGP2, differentially regulates RIG-I- and MDA5-dependent RNA sensing in an unknown manner. All three receptors possess a C-terminal regulatory domain (RD), which in the case of RIG-I senses the viral pattern 5'-triphosphate RNA and act...
متن کاملAnti-angiogenic efficacy of 5′-triphosphate siRNA combining VEGF silencing and RIG-I activation in NSCLCs
Short interfering RNA (siRNA) targeting angiogenic factors and further inhibiting tumor angiogenesis, is one of the potent antitumor candidates for lung cancer treatment. However, this strategy must be combined with other therapeutics like chemotherapy. In this study, we designed a 5'-triphosphate siRNA targeting VEGF (ppp-VEGF), and showed that ppp-VEGF exerted three distinct antitumor effects...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemical and biophysical research communications
دوره 456 2 شماره
صفحات -
تاریخ انتشار 2015