Acid-base dissociation mechanisms and energetics at the silica-water interface: An activationless process.

نویسندگان

  • Benjamin M Lowe
  • Chris-Kriton Skylaris
  • Nicolas G Green
چکیده

HYPOTHESIS Silanol groups at the silica-water interface determine not only the surface charge, but also have an important role in the binding of ions and biomolecules. As the pH is increased above pH 2, the silica surface develops a net negative charge primarily due to deprotonation of the silanol group. An improved understanding of the energetics and mechanisms of this fundamentally important process would further understanding of the relevant dynamics. SIMULATIONS Density Functional Theory ab initio molecular dynamics and geometry optimisations were used to investigate the mechanisms of surface neutralisation and charging in the presence of OH(-) and H3O(+) respectively. This charging mechanism has received little attention in the literature. FINDINGS The protonation or deprotonation of isolated silanols in the presence of H3O(+) or OH(-), respectively, was shown to be a highly rapid, exothermic reaction with no significant activation energy. This process occurred via a concerted motion of the protons through 'water wires'. Geometry optimisations of large water clusters at the silica surface demonstrated proton transfer to the surface occurring via the rarely discussed 'proton holes' mechanism. This indicates that surface protonation is possible even when the hydronium ion is distant (at least 4 water molecules separation) from the surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of nanosilica from silica fume using an acid-base precipitation technique and PVA as a nonionic surfactant

The purpose of the present study was to synthesize and characterize nanosilica from alkali-extraction of silica fume under controlled conditions using poly (vinyl alcohol) (PVA) as a dispersing agent. The dissolution efficiency of silica fume was affected by various factors such as concentration of the reagent, reaction time and temperature. A maximum dissolution efficiency of 91% was achieved ...

متن کامل

Periodic modeling of zeolite Ti-LTA.

We have proposed a combination of density functional theory calculations and interatomic potential-based simulations to study the structural, electronic, and mechanical properties of pure-silica zeolite Linde Type A (LTA), as well as two titanium-doped compositions. The energetics of the titanium distribution within the zeolite framework suggest that the inclusion of a second titanium atom with...

متن کامل

Synthesis and Characterization of Hydrophobic Silica Aerogel by Two Step(Acid-Base) Sol-Gel Process

The silica aerogel was prepared by the acid–base sol–gel polymerization of tetraethylorthosilicate precursor followed by ambient pressure drying. The prepared silica aerogels were characterized by Fourier transform infrared )FT-IR(, Thermo-gravimetric and differential thermal analysis )TG/DTA(, X-ray diffractometer )XRD(, Energy dispersive X-ray microanalysis )EDX(, Brunauer–Emmitt–Teller (BET)...

متن کامل

Determination of the acid dissociation constants of the p-sulphonato-calix[4]arene

The acid dissociation constants of the hydroxyl groups in 25, 26, 27, 28-tetrahydroxy-5, 11, 17, 23-tetrasulphonic-calix[4]arene (SC4) were determined at 25οC by a combination of potentiometric and spectrophotometric titration method. The first and second acid dissociation constants (pKa1, pKa2) were found to be 3.19 and 12.1, which demonstrated pKa shift due to intramolecular hydrogen bonding ...

متن کامل

A study on the catalytic activity of a new acidic ordered mesoporous silica (SBA-15)

SBA-15 is an interesting mesoporous silica material having highly ordered nanopores and a large surface area, which is widely employed as a catalyst. This mesoporous silica due to silanol groups is easily functionalized by various organic materials. A new acidic ordered functionalized mesoporous silica (SBA-15-Aminopropyl-Benzyl-SO3H) has been introduced as an efficient catalyst for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 451  شماره 

صفحات  -

تاریخ انتشار 2015