Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase, and A. niger PH 2.5 acid phosphatase.

نویسندگان

  • M Wyss
  • L Pasamontes
  • R Rémy
  • J Kohler
  • E Kusznir
  • M Gadient
  • F Müller
  • van Loon APGM
چکیده

Enzymes that are used as animal feed supplements should be able to withstand temperatures of 60 to 90 degrees C, which may be reached during the feed pelleting process. The thermostability properties of three histidine acid phosphatases, Aspergillus fumigatus phytase, Aspergillus niger phytase, and A. niger optimum pH 2.5 acid phosphatase, were investigated by measuring circular dichroism, fluorescence, and enzymatic activity. The phytases of A. fumigatus and A. niger were both denatured at temperatures between 50 and 70 degrees C. After heat denaturation at temperatures up to 90 degrees C, A. fumigatus phytase refolded completely into a nativelike, fully active conformation, while in the case of A. niger phytase exposure to 55 to 90 degrees C was associated with an irreversible conformational change and with losses in enzymatic activity of 70 to 80%. In contrast to these two phytases, A. niger pH 2.5 acid phosphatase displayed considerably higher thermostability; denaturation, conformational changes, and irreversible inactivation were observed only at temperatures of >/=80 degrees C. In feed pelleting experiments performed at 75 degrees C, the recoveries of the enzymatic activities of the three acid phosphatases were similar (63 to 73%). At 85 degrees C, however, the recovery of enzymatic activity was considerably higher for A. fumigatus phytase (51%) than for A. niger phytase (31%) or pH 2.5 acid phosphatase (14%). These findings confirm that A. niger pH 2.5 acid phosphatase is irreversibly inactivated at temperatures above 80 degrees C and that the capacity of A. fumigatus phytase to refold properly after heat denaturation may favorably affect its pelleting stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties.

Supplementation with phytase is an effective way to increase the availability of phosphorus in seed-based animal feed. The biochemical characteristics of an ideal phytase for this application are still largely unknown. To extend the biochemical characterization of wild-type phytases, the catalytic properties of a series of fungal phytases, as well as Escherichia coli phytase, were determined. T...

متن کامل

Engineering of phytase for improved activity at low pH.

For industrial applications in animal feed, a phytase of interest must be optimally active in the pH range prevalent in the digestive tract. Therefore, the present investigation describes approaches to rationally engineer the pH activity profiles of Aspergillus fumigatus and consensus phytases. Decreasing the negative surface charge of the A. fumigatus Q27L phytase mutant by glycinamidylation o...

متن کامل

The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila.

Phytases catalyse the hydrolysis of phytate (myo-inositol hexakisphosphate) to myo-inositol and inorganic phosphate. In this study genes encoding novel phytases from two different filamentous fungi, Aspergillus terreus strain 9A-1 and Myceliophthora thermophila were isolated. The encoded PhyA phytase proteins show 60% (A. terreus) and 48% (M. thermophila) identity, respectively, to the PhyA of ...

متن کامل

Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three-dimensional structure.

Previously, we determined the DNA and amino acid sequences as well as biochemical and biophysical properties of a series of fungal phytases. The amino acid sequences displayed 49-68% identity between species, and the catalytic properties differed widely in terms of specific activity, substrate specificity, and pH optima. With the ultimate goal to combine the most favorable properties of all phy...

متن کامل

Adopting selected hydrogen bonding and ionic interactions from Aspergillus fumigatus phytase structure improves the thermostability of Aspergillus niger PhyA phytase.

Although it has been widely used as a feed supplement to reduce manure phosphorus pollution of swine and poultry, Aspergillus niger PhyA phytase is unable to withstand heat inactivation during feed pelleting. Crystal structure comparisons with its close homolog, the thermostable Aspergillus fumigatus phytase (Afp), suggest associations of thermostability with several key residues (E35, S42, R16...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 64 11  شماره 

صفحات  -

تاریخ انتشار 1998