Discrete conservation laws and the convergence of long time simulations of the mkdv equation
نویسندگان
چکیده
Pseudospectral collocation methods and finite difference methods have been used for approximating an important family of soliton like solutions of the mKdV equation. These solutions present a structural instability which make difficult to approximate their evolution in long time intervals with enough accuracy. In this scenario the numerical schemes which preserve the discrete invariants related to some conservation laws of this equation guarantee better results than the methods which only take care of a high consistency order. Pseudospectral spatial discretization appear as the most robust schemes but finite difference schemes admit an easy formulation for the conservation of the invariants.
منابع مشابه
The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملTraveling waves and conservation laws for complex mKdV-type equations
Travelling waves and conservation laws are studied for a wide class of U(1)invariant complex mKdV equations containing the two known integrable generalizations of the ordinary (real) mKdV equation. The main results on travelling waves include deriving new complex solitary waves and kinks that generalize the well-known mKdV sech and tanh solutions. The main results on conservation laws consist o...
متن کاملOn Black-Scholes equation; method of Heir-equations, nonlinear self-adjointness and conservation laws
In this paper, Heir-equations method is applied to investigate nonclassical symmetries and new solutions of the Black-Scholes equation. Nonlinear self-adjointness is proved and infinite number of conservation laws are computed by a new conservation laws theorem.
متن کاملSymmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation
In this paper Lie point symmetries, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation are investigated. First of all Lie symmetries are obtained by using the general method based on invariance condition of a system of differential equations under a prolonged vector field. Then the structure of symmetry ...
متن کاملNumerical Solution of Hirota-Satsuma Coupled MKdV Equation with Quantic B-Spline Collocation Method
Collocation method using quintic B-splines finite element have been developed for solving numerically the HirotaSatsuma coupled MKdV equation. Accuracy of the proposed method is shown numerically by calculating conservation laws, 2 L and L norms on studying of a soliton solution. It is shown that the collocation scheme for solutions of the MKdV equation gives rise to smaller errors and is qui...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 235 شماره
صفحات -
تاریخ انتشار 2013