Kähler-Ricci flow on complete manifolds

نویسندگان

  • Lei Ni
  • LEI NI
چکیده

This is a paper based on author’s lectures delivered at the 2005 Clay Mathematics Institute summer school at MSRI. It serves as an overview on the Kähler-Ricci flow over complete noncompact manifolds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Property of Kähler-Ricci Solitons on Complete Complex Surfaces

where Rαβ(x, t) denotes the Ricci curvature tensor of the metric gαβ(x, t). One of the main problems in differential geometry is to find canonical structure on manifolds. The Ricci flow introduced by Hamilton [8] is an useful tool to approach such problems. For examples, Hamilton [10] and Chow [7] used the convergence of the Ricci flow to characterize the complex structures on compact Riemann s...

متن کامل

On dimension reduction in the Kähler-Ricci flow

We consider dimension reduction for solutions of the Kähler-Ricci flow with nonegative bisectional curvature. When the complex dimension n = 2, we prove an optimal dimension reduction theorem for complete translating KählerRicci solitons with nonnegative bisectional curvature. We also prove a general dimension reduction theorem for complete ancient solutions of the Kähler-Ricci flow with nonneg...

متن کامل

Ancient Solutions to Kähler-ricci Flow

In this paper, we prove that any non-flat ancient solution to KählerRicci flow with bounded nonnegative bisectional curvature has asymptotic volume ratio zero. We also classify all complete gradient shrinking solitons with nonnegative bisectional curvature. Both results generalize the corresponding earlier results of Perelman in [P1] and [P2]. The results then are applied to study the geometry ...

متن کامل

Gradient Kähler-ricci Solitons and a Uniformization Conjecture

In this article we study the limiting behavior of the KählerRicci flow on complete non-compact Kähler manifolds. We provide sufficient conditions under which a complete non-compact gradient KählerRicci soliton is biholomorphic to C. We also discuss the uniformization conjecture by Yau [15] for complete non-compact Kähler manifolds with positive holomorphic bisectional curvature.

متن کامل

Kähler-ricci Flow on Stable Fano Manifolds

We study the Kähler-Ricci flow on Fano manifolds. We show that if the curvature is bounded along the flow and if the manifold is K-polystable and asymptotically Chow semistable, then the flow converges exponentially fast to a Kähler-Einstein metric.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005