Spin transport across carbon nanotube quantum dots
نویسندگان
چکیده
We investigate linear and nonlinear transport in interacting single-wall carbon nanotubes (SWCNTs) that are weakly attached to ferromagnetic leads. For the reduced density matrix of a SWCNT quantum dot, equations of motion which account for an arbitrarily vectored magnetisation of the contacts are derived. We focus on the case of large diameter nanotubes where exchange effects emerging from short-ranged processes can be excluded and the four-electron periodicity at low bias can be observed. This yields in principle four distinct resonant tunnelling regimes, but due to symmetries in the involved groundstates, each two possess a mirror-symmetry. With a non-collinear configuration, we recover at the 4N ↔ 4N ± 1 resonances the analytical results known for the angular dependence of the conductance of a single level quantum dot or a metallic island. The two other cases are treated numerically and show on the first glance similar, yet not analytically describable dependences. In the nonlinear regime, negative differential conductance features occur for non-collinear lead magnetisations. PACS numbers: 73.63.Fg, 85.75.-d, 73.23.Hk Spin transport across carbon nanotube quantum dots 2
منابع مشابه
Transport spectroscopy of an impurity spin in a carbon nanotube double quantum dot.
We make use of spin selection rules to investigate the electron spin system of a carbon nanotube double quantum dot. Measurements of the electron transport as a function of the magnetic field and energy detuning between the quantum dots reveal an intricate pattern of the spin state evolution. We demonstrate that the complete set of measurements can be understood by taking into account the inter...
متن کاملSingle-wall Carbon Nanotubes with Ferromagnetic Electrodes
The electron transport in single-wall carbon nanotubes is one-dimensional and ballistic. Typically carbon nanotubes form tunneling contacts to electrodes and behave as quantum dots at low temperatures. We report on experiments on carbon nanotubes contacted with ferromagnetic metal. In these devices strong hysteretic magnetoresistance is observed at low temperatures. A possible interpretation of...
متن کاملQuantum dots in carbon nanotubes
In this overview paper, we present low-temperature electronic transport measurements of carbon nanotube quantum dots with a back gate. In a semiconducting tube, charge carriers could be completely depleted. The addition energy and the excitation spectrum have been studied as a function of the number of charges (electrons or holes), one by one. We observe electron–hole symmetry, which is a direc...
متن کاملSwitchable Coupling of Vibrations to Two-Electron Carbon-Nanotube Quantum Dot States.
We report transport measurements on a quantum dot in a partly suspended carbon nanotube. Electrostatic tuning allows us to modify and even switch "on" and "off" the coupling to the quantized stretching vibration across several charge states. The magnetic-field dependence indicates that only the two-electron spin-triplet excited state couples to the mechanical motion, indicating mechanical coupl...
متن کاملElectrical Transport in Single-Wall Carbon Nanotubes
We review recent progress in the measurement and understanding of the electrical properties of individual metal and semiconducting single-wall carbon nanotubes. The fundamental scattering mechanisms governing the electrical transport in nanotubes are discussed, along with the properties of p–n and Schottkybarrier junctions in semiconductor tubes. The use of advanced nanotube devices for electro...
متن کامل