Pulse Combustor Tail-Pipe Heat-Transfer Dependence on Frequency, Amplitude, and Mean Flow Rate

نویسندگان

  • J O H N E. DEC
  • JAY O. KELLER
  • J. O. KELLER
چکیده

A commonly cited advantage of pulse combustors is a high rate of heat transfer in the tail pipe. Past research on these rates of heat transfer is inconclusive regarding the amount of heat transfer enhancement and how various flow parameters affect this enhancement. This article reports an experimental heat transfer study in the tail pipe of a pulse combustor. The pulsation frequency, pulsation amplitude, and mean flow rate were varied systematically, and their effects on the heat transfer rates assessed. Spatially averaged Nusselt numbers were obtained from thermocouple measurements using a standard log-mean heat exchanger calculation. The Nusselt number was found to increase with both pulsation amplitude and frequency, with a maximum enhancement of 2.5 times that of steady flow at the same mean Reynolds number. The Nusselt number enhancement decreased with increasing mass flow rate for a given combustor pulsation frequency and amplitude. Independent axially resolved heat flux and gas temperature measurements confirmed the large Nusselt number increase with pulsations and demonstrated that entrance effects, although present, were small compared to the Nusselt number enhancement due to the pulsations. The data are compared with quasi-steady theory, which is the only available theory in the literature for this problem. Quasi-steady theory does not account for frequency effects and is not adequate for describing the data from this study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of A Single Turn Pulsating Heat Pipe based on Flow Boiling and Condensation Phenomena

Demand for high-performance cooling systems is one of the most challenging and virtual issues in the industry and Pulsating heat pipes are effective solutions for this concern. In the present study, the best predictor correlations of flow boiling and condensation are taken into account to model a single turn pulsating heat pipe mathematically. These considerations, result in derivation of more ...

متن کامل

Chem. Pharm. Bull. 55(11) 1545—1550 (2007)

prove the dissolution property and oral bioavailability of poorly water-soluble drugs, solid dispersion methods have been extensively used and numerous approaches have been reported such as fusion, solvent evaporation, and spray-drying methods. However, these methods involve various problems. Solid dispersions prepared by fusion usually have the shortcoming of being tacky and unstable, and solv...

متن کامل

The Influence of Pulsation on Heat Transfer in a Heat Exchanger for Parallel and Counter Water Flows

In this study, in order to increase the heat transfer rate in concentric double-pipe heat exchangers by an active method, a rotating ball valve was mounted downstream of the outer pipe end and used as a pulse generator. In the experimental set-up, hot water (40-70 °C) was passed through the inner pipe with fixed mass flow rate (Reynolds number ≈ 10,200) while cold water was passed through the a...

متن کامل

The Experimental Study of Nanoparticles Effect on Thermal Efficiency of Double Pipe Heat Exchangers in Turbulent Flow

In this work, the characteristics of flow and heat transfer of a fluid containing nano particles of aluminum oxide with the water volume fraction (0.1-0.2-0.3)(V/V) percent of the reports. The overall heat transfer coefficient, heat transfer and the average heat transfer fluid containing nano water - aluminum oxide in a horizontal double pipe counter flow heat exchanger under turbulent flow con...

متن کامل

Investigation of Laminar Pulsating Nanofluid Flow and Heat Transfer in a Rectangular Channel

In this study, two-dimensional pulsating unsteady flow of nanofluid through a rectangular channel with isothermal walls is investigated numerically. The set of resultant algebraic equations is solved simultaneously using SIMPLE algorithm to obtain the velocity and pressure distribution within the channel. The effects of several parameters, such as volume fraction of different nanoparticles, Rey...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003