SOME PROPERTIES OF h-MN-CONVEXITY AND JENSEN’S TYPE INEQUALITIES
نویسنده
چکیده
In this work, we introduce the class of h-MN-convex functions by generalizing the concept of MN-convexity and combining it with h-convexity. Namely, let M : [0, 1] → [a, b] be a Mean function given by M (t) = M (t; a, b); where by M (t; a, b) we mean one of the following functions: At (a, b) := (1− t) a + tb, Gt (a, b) = a1−tbt and Ht (a, b) := ab ta+(1−t)b = 1 At( 1 a , 1 b ) ; with the property that M (0; a, b) = a and M (1; a, b) = b. Let I, J be two intervals subset of (0,∞) such that (0, 1) ⊆ J and [a, b] ⊆ I. Consider a non-negative function h : J → (0,∞), a function f : I → (0,∞) is said to be h-MN-convex (concave) if the inequality f (M (t;x, y)) ≤ (≥) N (h(t); f(x), f(y)) , holds for all x, y ∈ I and t ∈ [0, 1]. In this way, nine classes of h-MN-convex functions are established, and therefore some analytic properties for each class of functions are explored and investigated. Characterizations of each type are given. Various Jensen’s type inequalities and their converses are proved.
منابع مشابه
Hardy Type Inequalities via Convexity - the Journey so Far
It is nowadays well-known that Hardy’s inequality (like many other inequalities) follows directly from Jensen’s inequality. Most of the development of Hardy type inequalities has not used this simple fact, which obviously was unknown by Hardy himself and many others. Here we report on some results obtained in this way mostly after 2002 by mainly using this fundamental idea.
متن کاملGeneralization of cyclic refinements of Jensen’s inequality by Fink’s identity
We generalize cyclic refinements of Jensen’s inequality from a convex function to a higher-order convex function by means of Lagrange–Green’s function and Fink’s identity. We formulate the monotonicity of the linear functionals obtained from these identities utilizing the theory of inequalities for n-convex functions at a point. New Grüssand Ostrowski-type bounds are found for identities associ...
متن کاملConvexity, Subadditivity and Generalized Jensen’s Inequality
In this paper we extend some theorems published lately on the relationship between convexity/concavity, and subadditivity/superadditivity. We also generalize inequalities of compound functions that refine Minkowski inequality.
متن کاملConvexity According to Means
Given a function f : I → J and a pair of means M and N, on the intervals I and J respectively, we say that f is MN -convex provided that f (M(x, y)) N(f (x), f (y)) for every x , y ∈ I . In this context, we prove the validity of all basic inequalities in Convex Function Theory, such as Jensen’s Inequality and the Hermite-Hadamard Inequality. Mathematics subject classification (2000): 26A51, 26D...
متن کاملJensen’s Inequality for Quasiconvex Functions
This class of functions strictly contains the class of convex functions defined on a convex set in a real linear space. See [8] and citations therein for an overview of this issue. Some recent studies have shown that quasiconvex functions have quite close resemblances to convex functions – see, for example, [4], [6], [7], [10] for quasiconvex and even more general extensions of convex functions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017