Plasmonic band gap engineering of plasmon-exciton coupling.
نویسندگان
چکیده
Controlling plasmon-exciton coupling through band gap engineering of plasmonic crystals is demonstrated in the Kretschmann configuration. When the flat metal surface is textured with a sinusoidal grating only in one direction, using laser interference lithography, it exhibits a plasmonic band gap because of the Bragg scattering of surface plasmon polaritons on the plasmonic crystals. The contrast of the grating profile determines the observed width of the plasmonic band gap and hence allows engineering of the plasmonic band gap. In this work, resonant coupling between the molecular resonance of a J-aggregate dye and the plasmonic resonance of a textured metal film is extensively studied through plasmonic band gap engineering. Polarization dependent spectroscopic reflection measurements probe the spectral overlap occurring between the molecular resonance and the plasmonic resonance. The results indicate that plasmon-exciton interaction is attenuated in the band gap region along the grating direction.
منابع مشابه
Plasmon-Exciton Coupling in Symmetry-Broken Nanocavities
We investigate the onset of strong coupling in the temporal dynamics of the exciton population at a single emitter interacting with symmetry-broken plasmonic nanocavities. These structures consist in pairs of metallodielectric elements separated by a nanometric gap, with different degrees of asymmetry imposed on their geometric or material characteristics. In order to describe the emergence of ...
متن کاملStrong Exciton-Plasmon Coupling in MoS2 Coupled with Plasmonic Lattice.
We demonstrate strong exciton-plasmon coupling in silver nanodisk arrays integrated with monolayer MoS2 via angle-resolved reflectance microscopy spectra of the coupled system. Strong exciton-plasmon coupling is observed with the exciton-plasmon coupling strength up to 58 meV at 77 K, which also survives at room temperature. The strong coupling involves three types of resonances: MoS2 excitons,...
متن کاملAdjustable Plasmonic Bandgap in One-Dimensional Nanograting Based on Localized and Propagating Surface Plasmons
Compared to the long history of plasmonic gratings, there are only a few studies regarding the bandgap in the propagation of plasmonic surface waves. Considering the previous studies on interpretation of plasmonic bandgap formation, we discuss this phenomenon using the effect of both surface plasmon polariton (SPP) and localized surface plasmon (LSP) for our fabricated one-dimensional metallic-...
متن کاملThermalization and cooling of plasmon-exciton polaritons: towards quantum condensation.
We present indications of thermalization and cooling of quasiparticles, a precursor for quantum condensation, in a plasmonic nanoparticle array. We investigate a periodic array of metallic nanorods covered by a polymer layer doped with an organic dye at room temperature. Surface lattice resonances of the array--hybridized plasmonic-photonic modes--couple strongly to excitons in the dye, and bos...
متن کاملUltra hybrid plasmonics: strong coupling of plexcitons with plasmon polaritons.
We report a ternary-coupled plasmonic system consisting of excitons of J-aggregated dye, localized surface plasmon polaritons of Ag nanoparticles, and propagating surface plasmon polaritons of continuous Ag film. J-aggregate dyes are uniformly self-assembled on colloidally synthesized Ag nanoprisms forming plexcitonic nanoparticles, which are placed at a distance nanometers away from the Ag thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics letters
دوره 39 19 شماره
صفحات -
تاریخ انتشار 2014