Implementation and Performance Evaluation of Prefix Adders uing FPGAs
نویسندگان
چکیده
Parallel Prefix Adders have been established as the most efficient circuits for binary addition. The binary adder is the critical element in most digital circuit designs including digital signal processors and microprocessor data path units. The final carry is generated ahead to the generation of the sum which leads extensive research focused on reduction in circuit complexity and power consumption of the adder. In VLSI implementation, parallel-prefix adders are known to have the best performance. This paper investigates four types of carry-tree adders (the Kogge-Stone, sparse Kogge-Stone, spanning tree, Brent kung Adder) and compare them to the simple Ripple Carry Adder and Carry Skip Adder. These designs of varied bit-widths are simulated using model-sim simulator of 6.4 version and implemented on a Xilinx 10.1 version Spartan 3E FPGA. These fast carry-chain carry-tree adders support the bit width up to 256. We report on the area requirements and reduction in circuit complexity for a variety of classical parallel prefix adder structures. Keywords-FPGA, Prefix Adder, ALU, Xilinx, VLSI, CLA, Simulation, Synthesis
منابع مشابه
Implementation of High Speed FIR Filter: Performance Comparison with Different Parallel Prefix Adders in FPGAs
This study describes the design of high speed FIR filter using parallel prefix adders and factorized multiplier. The fundamental component in constructing any high speed FIR filter consists of adders, multipliers and delay elements. To meet the constraint of high speed performance and low power consumption parallel prefix adders are more suitable. This study focus the design of new Parallel Pre...
متن کاملImplementation of Delay Reduction and Area Minimization in 128 and 144 Bit Parallel Prefix Adders Using Fpgas
Parallel-prefix adders (also known as carrytree adders) are known to have the best performance in VLSI designs compared to that of conventional Ripple Carry Adder (RCA). However, each type of parallel prefix adder has its own pros and cons and are chosen according to the design requirement of the application. This paper investigates mainly two types of carry-tree adders, the brent kungg adder a...
متن کاملHigh Performance Parallel Prefix Adders with Fast Carry Chain Logic
Binary adders are the basic and vital element in the circuit designs. Prefix adders are the most efficient binary adders for ASIC implementation. But these advantages are not suitable for FPGA implementation because of CLBs and routing constraints on FPGA. This paper presents different types of parallel prefix adders and compares them with the Simple Adder. The adders are designed using Verilog...
متن کاملDesign and Implementation of RNS Reverse Converter using Parallel Prefix Adders
The implementation of residue number system reverse converters based on well-known regular and modular parallel prefix adders is analyzed. The VLSI implementation results show a significant delay reduction and area × time2 improvements, all this at the cost of higher power consumption, which is the main reason preventing the use of parallel-prefix adders to achieve high-speed reverse converters...
متن کاملHigh –Speed Implementation of Design and Analysis by Using Parallel Prefix Adders
The binary adder is the critical element in most digital circuit designs including the digital signal processors (DSP) and microprocessor data unit path. As such as extensive research continues to be focused on improving the power, delay, improvement of the adder. The design and analysis of the parallel prefix adders (carry select adders) is to be implemented by using Verilog. In VLSI implement...
متن کامل