Mos oncogene product associates with kinetochores in mammalian somatic cells and disrupts mitotic progression.

نویسندگان

  • X M Wang
  • N Yew
  • J G Peloquin
  • G F Vande Woude
  • G G Borisy
چکیده

The mos protooncogene has opposing effects on cell cycle progression. It is required for reinitiation of meiotic maturation and for meiotic progression through metaphase II, yet it is an active component of cytostatic factor. mos is a potent oncogene in fibroblasts, but high levels of expression are lethal. The lethality of mos gene expression in mammalian cells could be a consequence of a blockage induced by its cytostatic factor-related activity, which may appear at high dosage in mitotic cells. We have directly tested whether expression of the Mos protein can block mitosis in mammalian cells by microinjecting a fusion protein between Escherichia coli maltose-binding protein and Xenopus c-Mos into PtK1 epithelial cells and analyzing the cells by video time-lapse and immunofluorescence microscopy. Time-course analyses showed that Mos blocked mitosis by preventing progression to a normal metaphase. Chromosomes frequently failed to attain a bipolar orientation and were found near one pole. Injection of a kinase-deficient mutant Mos had no effect on mitosis, indicating that the blockage of mitotic progression required Mos kinase activity. Antitubulin immunostaining of cells blocked by Mos showed that microtubules were present but that spindle morphology was abnormal. Immunostaining for the Mos fusion protein showed that both wild-type and kinase mutant proteins localized at the kinetochores. Our results suggest that mitotic blockage by Mos may result from an action of the Mos kinase on the kinetochores, thus increasing chromosome instability and preventing normal congression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CENP-E is an essential kinetochore motor in maturing oocytes and is masked during mos-dependent, cell cycle arrest at metaphase II.

CENP-E, a kinesin-like protein that is known to associate with kinetochores during all phases of mitotic chromosome movement, is shown here to be a component of meiotic kinetochores as well. CENP-E is detected at kinetochores during metaphase I in both mice and frogs, and, as in mitosis, is relocalized to the midbody during telophase. CENP-E function is essential for meiosis I because injection...

متن کامل

Activation of the MKK/ERK Pathway during Somatic Cell Mitosis: Direct Interactions of Active ERK with Kinetochores and Regulation of the Mitotic 3F3/2 Phosphoantigen

The mitogen-activated protein (MAP) kinase pathway, which includes extracellular signal-regulated protein kinases 1 and 2 (ERK1, ERK2) and MAP kinase kinases 1 and 2 (MKK1, MKK2), is well-known to be required for cell cycle progression from G1 to S phase, but its role in somatic cell mitosis has not been clearly established. We have examined the regulation of ERK and MKK in mammalian cells duri...

متن کامل

P-48: Nicotine Alters Both Somatic and Germ Cells in Adult Mouse Testis

Background: Nicotine as a toxic agent in cigarette has detrimental effects on reproduction. The aim of this study was to evaluate effects of of nicotine on germ and somatic cells in adult mouse testis. Materials and Methods: Male mice were divided into four groups. Group A or controls, groups of B, C and D were treated with nicotine intraperitoneally in doses of 0.1, 0.2 and 0.4 mg/100 g body w...

متن کامل

Requirements for NuMA in maintenance and establishment of mammalian spindle poles

Microtubules of the mitotic spindle in mammalian somatic cells are focused at spindle poles, a process thought to include direct capture by astral microtubules of kinetochores and/or noncentrosomally nucleated microtubule bundles. By construction and analysis of a conditional loss of mitotic function allele of the nuclear mitotic apparatus (NuMA) protein in mice and cultured primary cells, we d...

متن کامل

Lack of response to unaligned chromosomes in mammalian female gametes

Chromosome segregation errors are highly frequent in mammalian female meiosis, and their incidence gradually increases with maternal age. The fate of aneuploid eggs is obviously dependent on the stringency of mechanisms for detecting unattached or repairing incorrectly attached kinetochores. In case of their failure, the newly formed embryo will inherit the impaired set of chromosomes, which wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 91 18  شماره 

صفحات  -

تاریخ انتشار 1994