Plasminogen kringle 5 induces apoptosis of brain microvessel endothelial cells: sensitization by radiation and requirement for GRP78 and LRP1.
نویسندگان
چکیده
Recombinant plasminogen kringle 5 (rK5) has been shown to induce apoptosis of dermal microvessel endothelial cells (MvEC) in a manner that requires glucose-regulated protein 78 (GRP78). As we are interested in antiangiogenic therapy for glioblastoma tumors, and the effectiveness of antiangiogenic therapy can be enhanced when combined with radiation, we investigated the proapoptotic effects of rK5 combined with radiation on brain MvEC. We found that rK5 treatment of brain MvEC induced apoptosis in a dose- and time-dependent manner and that prior irradiation significantly sensitized (500-fold) the cells to rK5-induced apoptosis. The rK5-induced apoptosis of both unirradiated and irradiated MvEC required expression of GRP78 and the low-density lipoprotein receptor-related protein 1 (LRP1), a scavenger receptor, based on down-regulation studies with small interfering RNA, and blocking studies with either a GRP78 antibody or a competitive inhibitor of ligand binding to LRP1. Furthermore, p38 mitogen-activated protein kinase was found to be a necessary downstream effector for rK5-induced apoptosis. These data suggest that irradiation sensitizes brain MvEC to the rK5-induced apoptosis and that this signal requires LRP1 internalization of GRP78 and the activation of p38 mitogen-activated protein kinase. Our findings suggest that prior irradiation would have a dose-sparing effect on rK5 antiangiogenic therapy for brain tumors and further suggest that the effects of rK5 would be tumor specific, as the expression of GRP78 protein is up-regulated on the brain MvEC in glioblastoma tumor biopsies compared with the normal brain.
منابع مشابه
131I therapy mediated by sodium/iodide symporter combined with kringle 5 has a synergistic therapeutic effect on glioma.
Glioblastoma (GBM) is the most common and most aggressive primary brain tumor; the prognosis of patients with GBM remains poor. The sodium/iodide symporter (NIS) can be used to absorb several isotopes, such as 131I for nuclear medicine imaging and radionuclide therapy. Previously, we found that the early growth response-1 (Egr1) promoter had an 131I radiation positive feedback effect on the NIS...
متن کاملHEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Kringle 5 of human plasminogen, an angiogenesis inhibitor, induces both autophagy and apoptotic death in endothelial cells
Inhibition of endothelial cell proliferation and angiogenesis is emerging as an important strategy in cancer therapeutics. Kringle 5 (K5) of human plasminogen is a potent angiogenesis inhibitor. Previous studies have shown K5 exposure promotes caspase activity and apoptosis in endothelial cells. Here we report that K5 treatment evokes an autophagic response in endothelial cells that is specific...
متن کاملKringle 5 of human plasminogen, an angiogenesis inhibitor, induces both autophagy and apoptotic death in endothelial cells.
Inhibition of endothelial cell proliferation and angiogenesis is emerging as an important strategy in cancer therapeutics. Kringle 5 (K5) of human plasminogen is a potent angiogenesis inhibitor. Previous studies have shown K5 exposure promotes caspase activity and apoptosis in endothelial cells. Here we report that K5 treatment evokes an autophagic response in endothelial cells that is specific...
متن کاملVGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کاملPlasminogen structural domains exhibit different functions when associated with cell surface GRP78 or the voltage-dependent anion channel.
Both the voltage-dependent anion channel and the glucose-regulated protein 78 have been identified as plasminogen kringle 5 receptors on endothelial cells. In this study, we demonstrate that kringle 5 binds to a region localized in the N-terminal domain of the glucose-regulated protein 78, whereas microplasminogen does so through the C-terminal domain of the glucose-regulated protein 78. Both p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 69 13 شماره
صفحات -
تاریخ انتشار 2009