Improved Microaneurysm Detection using Deep Neural Networks
نویسنده
چکیده
In this work, we propose a novel microaneurysm (MA) detection for early dieabetic ratinopathy screening using color fundus images. Since MA usually the first lesions to appear as a indicator of diabetic retinopathy, accurate detection of MA is necessary for treatment. Each pixel of the image is classified as either MA or non-MA using deep neural network with dropout training procedure using maxout activation function. No preprocessing step or manual feature extraction is required. Substantial improvements over standard MA detection method based on pipeline of preprocessing, feature extraction, classification followed by postprocessing is achieved. The presented method is evaluated in publicly available Retinopathy Online Challenge (ROC) and Diaretdb1v2 database and achieved state-of-the-art accuracy.
منابع مشابه
A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملMicroaneurysm Detection in Fundus Images Using a Two-step Convolutional Neural Networks
Diabetic Retinopathy (DR) is the prominent cause of blindness in the world. The early treatment of DR can be conducted from detection of microaneurysms (MAs) which is reddish spots in retinal images. An automated microaneurysm detection can be a helpful system for ophthalmologists for detecting of MA. In this paper, deep learning, in particular convolutional neural network (CNN), is used as a p...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملDetecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1505.04424 شماره
صفحات -
تاریخ انتشار 2015