Study on Effects of Titanium Surface Microporous Coatings Containing Zinc on Osteoblast Adhesion and Its Antibacterial Activity

نویسندگان

  • Quan-Ming Zhao
  • Guang-Zhong Li
  • Hao-Ming Zhu
  • Li Cheng
چکیده

Metal surface structure/biomedical function integration is the current research focus. In previous studies, we have successfully prepared the microporous coatings containing zinc on the pure titanium surface by MAO. In the study, osteoblasts were seeded on the surface of the microporous coatings containing zinc and the adhesion of osteoblasts were evaluated, and the antibacterial activity of the microporous coatings containing zinc is observed through in vitro bacterial experiments. The result indicates that the adhesion ability of osteoblasts on the surface of microporous coatings containing zinc was very good, and the coatings could obviously inhibit the growth of Staphylococcus aureus and had good antibacterial activity. In conclusion, the microporous coatings containing zinc on titanium surface have good osteogenic and antibacterial properties and have good application prospect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Characterization and Tribological Behaviour of Ti-Ni-P Intermetallic Coatings on Titanium Alloys

In this research, tribological behavior of Ti-Ni-P intermetallic coatings on titanium substrates have been investigated under dry reciprocating conditions. Hardness profile testing results exhibit that high surface hardness has been attained and static indentation result shows that the intermetallic coating has better adhesion strength than the conventional ceramic coatings. In this respect, th...

متن کامل

Surface Characterization and Tribological Behaviour of Ti-Ni-P Intermetallic Coatings on Titanium Alloys

In this research, tribological behavior of Ti-Ni-P intermetallic coatings on titanium substrates have been investigated under dry reciprocating conditions. Hardness profile testing results exhibit that high surface hardness has been attained and static indentation result shows that the intermetallic coating has better adhesion strength than the conventional ceramic coatings. In this respect, th...

متن کامل

Atomic layer deposition of nano-TiO2 thin films with enhanced biocompatibility and antimicrobial activity for orthopedic implants

Titanium (Ti) and its alloys have been extensively used as implant materials in orthopedic applications. Nevertheless, implants may fail due to a lack of osseointegration and/or infection. The aim of this in vitro study was to endow an implant surface with favorable biological properties by the dual modification of surface chemistry and nanostructured topography. The application of a nanostruct...

متن کامل

Electro-chemical deposition of nano hydroxyapatite-zinc coating on titanium metal substrate

BACKGROUND Titanium is an inert metal that does not induce osteogenesis and has no antibacterial properties; it is proposed that hydroxyapatite coating can enhance its bioactivity, while zinc can contribute to antibacterial properties and improve osseointegration. AIMS A nano-sized hydroxyapatite-zinc coating was deposited on commercially pure titanium using an electro-chemical process, in or...

متن کامل

Nanostructured metal coatings on polymers increase osteoblast attachment

Bioactive coatings are in high demand to increase the functions of cells for numerous medical devices. The objective of this in vitro study was to characterize osteoblast (bone-forming cell) adhesion on several potential orthopedic polymeric materials (specifically, polyetheretherketone, ultra-high molecular weight polyethylene, and polytetrafluoroethylene) coated with either titanium or gold u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017