Categorical aspects of equivariant homotopy
نویسندگان
چکیده
منابع مشابه
Equivariant Extensions of Categorical Groups
If is a group, then the category of -graded categorical groups is equivalent to the category of categorical groups supplied with a coherent left-action from . In this paper we use this equivalence and the homotopy classification of graded categorical groups and their homomorphisms to develop a theory of extensions of categorical groups when a fixed group of operators is acting. For this kind of...
متن کاملThe Geometry of Unitary 2-Representations of Finite Groups and their 2-Characters
Motivated by topological quantum field theory, we investigate the geometric aspects of unitary 2-representations of finite groups on 2-Hilbert spaces, and their 2-characters. We show how the basic ideas of geometric quantization are ‘categorified’ in this context: just as representations of groups correspond to equivariant line bundles, 2-representations of groups correspond to equivariant gerb...
متن کاملSome Algebraic Applications of Graded Categorical Group Theory
The homotopy classification of graded categorical groups and their homomorphisms is applied, in this paper, to obtain appropriate treatments for diverse crossed product constructions with operators which appear in several algebraic contexts. Precise classification theorems are therefore stated for equivariant extensions by groups either of monoids, or groups, or rings, or rings-groups or algebr...
متن کاملResearch Narrative
Introduction – Categorifying Parshin’s conjecture 1 1. Higher categories and unicity 2 1.1. Iterated complete Segal spaces 3 1.2. Relative categories and higher relative categories 3 1.3. The Unicity Theorem 3 2. Algebraic K-theory 3 2.1. The new fundamental theorems of K-theory 4 2.2. TheTheorem of the Heart 4 2.3. New localization sequences 4 2.4. Deligne Conjecture for K-theory 4 2.5. A high...
متن کاملA ug 1 99 8 Spaces of maps into classifying spaces for equivariant crossed complexes , II : The general topological group case
Spaces of maps into classifying spaces for equivariant crossed complexes, II: The general topological group case. Abstract The results of a previous paper [3] on the equivariant homotopy theory of crossed complexes are generalised from the case of a discrete group to general topological groups. The principal new ingredient necessary for this is an analysis of homotopy coherence theory for cross...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Categorical Structures
دوره 4 شماره
صفحات -
تاریخ انتشار 1996