Autotrophy in Groundwater Ecosystems

نویسندگان

  • Claudia Sabine Kellermann
  • Claudia Kellermann
چکیده

The major role in global net CO2 fixation plays photosynthesis of green plants, algae and cyanobacteria, but other microorganisms are also important concerning autotrophy; i.e. autotrophic microorganisms can be found in most bacterial groups (Eubacteria) and there are even numerous representatives within the Archaea. CO2 fixation is not only one of the world’s most important biogeochemical processes and responsible for the buildup of organic compounds which are needed for biological functions (e.g. cell growth or nutrition of heterotrophic organisms); ultimately all ecosystems are based on inputs of carbon and energy provided by autotrophic organisms which can be found in almost all environments. While the importance of CO2 fixation on the surface is known, there is almost no information about autotrophic processes in the subsurface. The widespread opinion is that subsurface communities are dominated by heterotrophic microorganisms, but it is unlikely that all subsurface biomass depends on the limited amounts of organic carbon imported from the surface or on pollution dumping. Groundwater systems comply with all requirements for autotrophic growth processes (electron donors e.g. H2, S2O3 and electron acceptors e.g. NO3, O2 are available as well as plenty of inorganic carbon), so autotrophic microorganisms could significantly contribute to the carbon flux in at least some of those systems. In summary, the existence and the role of chemolithoautotrophic CO2 fixation in the terrestrial subsurface is hardly known. To date, five CO2 fixation pathways are described, i.e. the Calvin-Benson-Bassham cycle (Calvin cycle), the reductive tricarboxylic acid cycle, the reductive acetyl CoA pathway, the 3-hydroxypropionate cycle and the 3-hydroxypropionate/4-hydroxybutyrate CO2 fixation pathway, with the Calvin cycle being the most intensively studied and probably the most abundant one. A sixth fixation pathway was just recently discovered. Objective of this thesis was to prove the CO2 fixation potential within the microbial communities in different groundwater ecosystems by means of functional gene analysis (cbbL, cbbM and acl genes) and to link this potential with in situ autotrophic activities as evaluated by different isotope and fatty acid approaches (FISH-MAR and PLFA analysis). Furthermore enrichment cultures under obligate chemolithoautotrophic conditions were started to get an idea about the diversity of those communities. The detection of the cbb genes in a contaminated and a pristine aquifer proved the occurrence of CO2 fixation potential being present in the bacterial communities of those ecosystems. Concerning the tar-oil contaminated aquifer, the majority of all retrieved cbb sequences was closely related to the cbbL and cbbM sequences belonging to the genus Thiobacillus, indicating that this genus might be of importance in groundwater ecosystems. This hypothesis is further supported by the results retrieved in the investigation at the organically poor site, the Testfield Scheyern. Here, most cbbM sequences detected were also closely related to the cbb sequences of Thiobacillus ssp.. The successful labelling of bacterial cells deriving from the tar-oil contaminated aquifer via fluorescent in situ hybridization (FISH) indicated considerable bacterial activity in this aquifer, but the detection of radiolabeled cells failed. C-labelled CaCO3 was exposed together with sterile sediment in the same aquifer. Cell counts suggested a successful colonization of the exposed sediments, but PFLA concentration was low. However, the incorporation of C-carbon into two of the detected fatty acids was a direct hint for bacterial CO2-uptake. Successful enrichment cultures out of both investigated aquifers proved the actual occurrence of autotrophs in those ecosystems. In total four new chemolithoautotrophic bacterial strains could be isolated, one of them, belonging to the genus Thiobacillus, was further characterized. It was an obligate chemolithoautotrophic strain, using the Calvin cycle for CO2 fixation. It was described as a new species, Thiobacillus thiophilus D24TN sp. nov.. Autotrophie in Grundwasserökosystemen

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Archaeal Diversity and CO2 Fixers in Carbonate-/Siliciclastic-Rock Groundwater Ecosystems

Groundwater environments provide habitats for diverse microbial communities, and although Archaea usually represent a minor fraction of communities, they are involved in key biogeochemical cycles. We analysed the archaeal diversity within a mixed carbonate-rock/siliciclastic-rock aquifer system, vertically from surface soils to subsurface groundwater including aquifer and aquitard rocks. Archae...

متن کامل

Mapping Groundwater Dependent Ecosystems in California

BACKGROUND Most groundwater conservation and management efforts focus on protecting groundwater for drinking water and for other human uses with little understanding or focus on the ecosystems that depend on groundwater. However, groundwater plays an integral role in sustaining certain types of aquatic, terrestrial and coastal ecosystems, and their associated landscapes. Our aim was to illumina...

متن کامل

How ecosystems’ shifts change the optimal groundwater management strategy

250 words) The increasing pressure and overexploitation of water bodies in the recent decades are negatively affecting the quality and quantity of aquifers. Its deterioration is also having many negative impacts on numerous ecosystems connected with these water bodies, as is the case of groundwater-dependent ecosystems (GDEs). Therefore, the protection of groundwater resources and ecosystems ar...

متن کامل

Stygofauna enhance prokaryotic transport in groundwater ecosystems

More than 97% of the world's freshwater reserves are found in aquifers, making groundwater one of the most important resources on the planet. Prokaryotic communities in groundwater underpin the turnover of energy and matter while also maintaining groundwater purity. Thus, knowledge of microbial transport in the subsurface is crucial for maintaining groundwater health. Here, we describe for the ...

متن کامل

Impact of land use and land cover change on groundwater recharge and quality in the southwestern US

Humans have exerted large-scale changes on the terrestrial biosphere, primarily through agriculture; however, the impacts of such changes on the hydrologic cycle are poorly understood. The purpose of this study was to test the hypothesis that the conversion of natural rangeland ecosystems to agricultural ecosystems impacts the subsurface portion of the hydrologic cycle by changing groundwater r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009