Cubic Polynomials: a Measurable View on Parameter Space

نویسنده

  • ROMAIN DUJARDIN
چکیده

We study the fine geometric structure of bifurcation currents in the parameter space of cubic polynomials viewed as dynamical systems. In particular we prove that these currents have some laminar structure in a large region of parameter space, reflecting the possibility of quasiconformal deformations. On the other hand, there is a natural bifurcation measure, supported on the closure of rigid parameters. We prove a strong non laminarity statement relative to this measure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The iteration of cubic polynomials Part I: The global topology of parameter space

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 CHAPTER I. Univalent functions in complex analytic dynamics . . . . . . 147 1. Attraction to infinity . . . . . . . . . . . . . . . . . . . . . . . 147 2. Parametrizing the space of polynomials . . . . . . . . . . . . . 150 3. Compactness of the connectedness locus . . . . . . . . . . . . 153 4. The mapping q~e is ...

متن کامل

A Family of Cubic Rational Maps and Matings of Cubic Polynomials

Introduction 1. Preliminaries 2. Statement of the Results and Examples 3. General Analysis on Branched Coverings and Matings 4. Proof of the Results: First Part 5. Proof of the Results: Second Part Appendix: Matings Seen in Parameter Space and Some Numerical Observations Acknowledgements References We study a family of cubic branched coverings and matings of cubic polynomials of the form g?? f,...

متن کامل

Puiseux Series Polynomial Dynamics and Iteration of Complex Cubic Polynomials

We study polynomials with coefficients in a field L as dynamical systems where L is any algebraically closed and complete ultrametric field with dense valuation group and characteristic zero residual field. We give a complete description of the dynamical and parameter space of cubic polynomials. In particular we characterize cubic polynomials with compact Julia sets. Also, we prove that any inf...

متن کامل

Landing Property of Stretching Rays for Real Cubic Polynomials

The landing property of the stretching rays in the parameter space of bimodal real cubic polynomials is completely determined. Define the Böttcher vector by the difference of escaping two critical points in the logarithmic Böttcher coordinate. It is a stretching invariant in the real shift locus. We show that stretching rays with non-integral Böttcher vectors have non-trivial accumulation sets ...

متن کامل

0 O ct 2 00 3 DOUBLE AFFINE HECKE ALGEBRAS OF RANK 1 AND AFFINE CUBIC SURFACES

We study the algebraic properties of the five-parameter family H(t1, t2, t3, t4; q) of double affine Hecke algebras of type C ∨ C1. This family generalizes Cherednik's double affine Hecke algebras of rank 1. It was introduced by Sahi and studied by Noumi and Stokman as an algebraic structure which controls Askey-Wilson polynomials. We show that if q = 1, then the spectrum of the center of H is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006