Polyglutamine toxicity induces rod photoreceptor division, morphological transformation or death in spinocerebellar ataxia 7 mouse retina.

نویسندگان

  • Marina G Yefimova
  • Nadia Messaddeq
  • Alice Karam
  • Carine Jacquard
  • Chantal Weber
  • Laurent Jonet
  • Uwe Wolfrum
  • Jean-Claude Jeanny
  • Yvon Trottier
چکیده

In neurodegenerative disorders caused by polyglutamine (polyQ) expansion, polyQ toxicity is thought to trigger a linear cascade of successive degenerative events leading to neuronal death. To understand how neurons cope with polyQ toxicity, we studied a Spinocerebellar ataxia 7 (SCA7) mouse which expresses polyQ-expanded ATXN7 only in rod photoreceptors. We show that in response to polyQ toxicity, SCA7 rods go through a range of radically different cell fates, including apoptotic and non-apoptotic cell death, cell migration, morphological transformation into a round cell or, most remarkably, cell division. The temporal profile of retinal remodeling indicates that some degenerative pathways are triggered early in the disease but decline later on, while others worsen progressively. Retinal remodeling results in a relative maintenance of photoreceptor population, but does not preserve the retinal function. Rod responses to proteotoxicity correlate with the nature, level and ratio of mutant ATXN7 species. The multifaceted response of neurons to polyQ toxicity is an important concept for the design of therapeutic strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyglutamine expansion causes neurodegeneration by altering the neuronal differentiation program.

Huntington's disease (HD) and spinocerebellar ataxia type 7 (SCA7) belong to a group of inherited neurodegenerative diseases caused by polyglutamine (polyQ) expansion in corresponding proteins. Transcriptional alteration is a unifying feature of polyQ disorders; however, the relationship between polyQ-induced gene expression deregulation and degenerative processes remains unclear. R6/2 and R7E ...

متن کامل

Progressive retinal degeneration and dysfunction in R6 Huntington's disease mice.

Huntington's disease (HD) and spinocerebellar ataxia type 7 (SCA7) belong to a group of progressive neurodegenerative diseases caused by polyglutamine (polyQ) expansions. SCA7 is the only one to display degeneration in the retina, a tissue usually spared in HD. We previously described a SCA7 transgenic retinal model expressing mutant full length ataxin-7 in rod photoreceptors. These mice develo...

متن کامل

Glutamine-Expanded Ataxin-7 Alters TFTC/STAGA Recruitment and Chromatin Structure Leading to Photoreceptor Dysfunction

Spinocerebellar ataxia type 7 (SCA7) is one of several inherited neurodegenerative disorders caused by a polyglutamine (polyQ) expansion, but it is the only one in which the retina is affected. Increasing evidence suggests that transcriptional alterations contribute to polyQ pathogenesis, although the mechanism is unclear. We previously demonstrated that the SCA7 gene product, ataxin-7 (ATXN7),...

متن کامل

Disease progression despite early loss of polyglutamine protein expression in SCA7 mouse model.

Nine neurodegenerative diseases including Huntington's disease (HD) and spinocerebellar ataxia type 7 (SCA7) are caused by an expansion of a polyglutamine (polyQ) stretch in the respective proteins. Aggregation of expanded polyQ-containing proteins into the nucleus is a hallmark of these diseases. Recent evidence indicates that transcriptional dysregulation may contribute to the molecular patho...

متن کامل

Hsp70 and Hsp40 chaperones do not modulate retinal phenotype in SCA7 mice.

Nine neurodegenerative diseases, including spinocerebellar ataxia type 7 (SCA7), are caused by the expansion of polyglutamine stretches in the respective disease-causing proteins. A hallmark of these diseases is the aggregation of expanded polyglutamine-containing proteins in nuclear inclusions that also accumulate molecular chaperones and components of the ubiquitin-proteasome system. Manipula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurobiology of disease

دوره 40 1  شماره 

صفحات  -

تاریخ انتشار 2010