Manufacturing and Characterization of Ti6Al4V Lattice Components Manufactured by Selective Laser Melting

نویسندگان

  • Sabina L. Campanelli
  • Nicola Contuzzi
  • Antonio D. Ludovico
  • Fabrizia Caiazzo
  • Francesco Cardaropoli
  • Vincenzo Sergi
چکیده

The paper investigates the fabrication of Selective Laser Melting (SLM) titanium alloy Ti6Al4V micro-lattice structures for the production of lightweight components. Specifically, the pillar textile unit cell is used as base lattice structure and alternative lattice topologies including reinforcing vertical bars are also considered. Detailed characterizations of dimensional accuracy, surface roughness, and micro-hardness are performed. In addition, compression tests are carried out in order to evaluate the mechanical strength and the energy absorbed per unit mass of the lattice truss specimens made by SLM. The built structures have a relative density ranging between 0.2234 and 0.5822. An optimization procedure is implemented via the method of Taguchi to identify the optimal geometric configuration which maximizes peak strength and energy absorbed per unit mass.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manufacturing and Characterization of 18Ni Marage 300 Lattice Components by Selective Laser Melting

The spreading use of cellular structures brings the need to speed up manufacturing processes without deteriorating mechanical properties. By using Selective Laser Melting (SLM) to produce cellular structures, the designer has total freedom in defining part geometry and manufacturing is simplified. The paper investigates the suitability of Selective Laser Melting for manufacturing steel cellular...

متن کامل

In vivo XCT bone characterization of lattice structured implants fabricated by additive manufacturing

Several cylindrical specimens and dental implants, presenting diagonal lattice structures with different cell sizes (600, 900 and 1200 μm) were additively manufactured by selective laser melting process. Then they were implanted for two months in a sheep. After removal, they were studied by Archimedes' method as well as X-ray computed tomography in order to assess the penetration of bone into t...

متن کامل

Parameter Study of GTN Model in a SLM Manufactured Lattice Structure under Compression by Using FEM

This study investigates the effect of material parameters of the Gurson-Tvergaard-Needleman (GTN) model on the failure prediction of cellular structures. The effect of elastic modulus, calibration parameter of GTN model, isotropic hardening, fracture strain, and strut diameter on the load-displacement curve of a lattice structure fabricated by Selective Laser Melting (SLM) has been studied by u...

متن کامل

A Comparison of Biocompatibility of a Titanium Alloy Fabricated by Electron Beam Melting and Selective Laser Melting

Electron beam melting (EBM) and selective laser melting (SLM) are two advanced rapid prototyping manufacturing technologies capable of fabricating complex structures and geometric shapes from metallic materials using computer tomography (CT) and Computer-aided Design (CAD) data. Compared to traditional technologies used for metallic products, EBM and SLM alter the mechanical, physical and chemi...

متن کامل

Characterization of Nd: Yag Laser Radiation Effects on Ti6Al4V Physico-Chemical Properties: An In Vivo Study

The effect of a Nd: YAG laser (1064 nm) has been studied on Ti6Al4V alloy in terms of optical and physical parameters for biomedical applications. The superior surface microhardness hardness (i.e. 377 VHN) is attributed to grain refinement associated with laser melting and rapid solidification. The electrochemical property, mainly pitting corrosion resistance, has been carried out in Hanks salt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014