Prospects for Chiral Nonlinear Optical Media
نویسندگان
چکیده
This paper describes the development and optimization of chiral, nonpolar media with large second-order nonlinear optical responses. We employ molecular engineering, quantum-mechanical sum-over-states theory, and measurements of molecular hyperpolarizability by means of Kleinman-disallowed hyper-Rayleigh scattering in order to understand molecular properties. Then we analyze the appropriate arrangement of the chromophores that produce an optimum axial nonlinear optical medium. Chromophores with large Kleinman disallowed traceless symmetric second-rank tensor hyperpolarizabilities can be aligned so as to result in large susceptibilities (2) in structures that lack polar order. We found that -shaped chromophores with 2 or similar symmetry are good candidates for these materials, as they can exhibit large second-rank components of the hyperpolarizability tensor. A wide variety of techniques can be used to fabricate bulk materials belonging to the chiral nonpolar symmetry groups and 2. The microscopic chromophore alignment schemes that optimize the nonlinear optical response in such materials are deduced from general symmetry consideration for both molecules and bulk. We also speculate on the possible application of such materials as high-bandwidth spatial light modulators.
منابع مشابه
Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications.
Optical chiral metamaterials have recently attracted considerable attention because they offer new and exciting opportunities for fundamental research and practical applications. Through pragmatic designs, the chiroptical response of chiral metamaterials can be several orders of magnitude higher than that of natural chiral materials. Meanwhile, the local chiral fields can be enhanced by plasmon...
متن کاملElectromagnetic Fields in Linear and Nonlinear Chiral Media: a Time-domain Analysis
We present several recent and novel results on the formulation and the analysis of the equations governing the evolution of electromagnetic fields in chiral media in the time domain. In particular, we present results concerning the well-posedness and the solvability of the problem for linear, time-dependent, and nonlocal media, and results concerning the validity of the local approximation of t...
متن کاملTheoretical study of magnetic susceptibility and optical activity of small molecules containing one chiral center
In the first part of this work, correlation between optical activity and elements of magnetic susceptibility tensor (MST) for five classes of model small molecules containing a single chiral center has been studied using quantum computational techniques at DFT-B3LYP level of theory with 6-311G basis set. Several molecular properties are used to reduce the MST elements prior to the examination o...
متن کاملAuxiliary Potentials In Chiral Media
In the present paper, the expressions for scalar and vector potentials in lossless isotropic chiral media are analyzed. Propagating eigenvalues of these potentials are then obtained. Furthermore by decomposition of sources and fields in a chiral medium, we introduce the auxiliary right-and left-handed potentials and find the associated fields. These potentials are used to solve the problem of a...
متن کاملشبیهسازی انتشار امواج گاوسی تخت شده در سیستمهای اپتیکی ABCD با روش تبدیل پیرا محوری
In this paper, propagation of flattend Gaussian beam in optical media is simulated by split step fourier method, ABCD matrix method, and paraxial group method, and results are compared. For this purpose, at first, flattend Gaussian beam, strongly nonlocal nonlinear media and investigation methods of propagation of optical beams are introduced. Then, propagation of flattend Gaussian beam in free...
متن کامل