Bridging Music and Image: A Preliminary Study with Multiple Ranking CCA Learning

نویسندگان

  • Xixuan Wu
  • Yu Qiao
  • Xiaogang Wang
  • Xiaoou Tang
چکیده

Human perception of music and image are highly correlated. Both of them can inspire human sensation like emotion, power etc. This paper preliminarily investigates how to model the relationship between music and image using 47,888 music-image pairs extracted from music videos. We have two basic observations for this relationship: 1) music space exhibits simpler cluster structure than image space, and 2) the relationship between the two spaces is complex and nonlinear. Based on these observations, we develop Multiple Ranking Canonical Correlation Analysis (MR-CCA) to learn such relationship. MR-CCA clusters the music-image pairs according to their music parts, and then conducts Ranking CCA (R-CCA) for each cluster. Compared with classical CCA, R-CCA takes account of the pairwise ranking information available in our dataset. MR-CCA improves performance and significantly reduce computational cost. Experiment results show that R-CCA outperforms CCA, and MR-CCA has the best performance, a consistency score of 84.52% with human labeling. The proposed method can be generalized to model cross media relationship and has potential applications in video generation, background music recommendation etc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Effect of Music on Spatial Learning in a Virtual Reality Task

Background: Spatial learning and navigation is a fundamental cognitive ability consisting of multiple cognitive components. Despite intensive efforts conducted with the assistance of virtual reality technology and functional Magnetic Resonance Imaging (fMRI) modality, the music effect on this cognition and the involved neuronal mechanisms remain elusive. Objectives: We aimed to investigate the...

متن کامل

A Data Focusing method for Microwave Imaging of Extended Targets

This paper presents a data focusing method (DFM) to image extended targets using the multiple signal classification (MUSIC) algorithm. The restriction on the number of transmitter-receiver antennas in a microwave imaging system deteriorates profiling an extended target that comprises many point scatterers. Under such situation, the subspace-based linear inverse scattering methods, like the MUSI...

متن کامل

بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای

Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...

متن کامل

P14: Anxiety Control Using Q-Learning

Anxiety disorders are the most common reasons for referring to specialized clinics. If the response to stress changed, anxiety can be greatly controlled. The most obvious effect of stress occurs on circulatory system especially through sweating. the electrical conductivity of skin or in other words Galvanic Skin Response (GSR) which is dependent on stress level is used; beside this parameter pe...

متن کامل

Multi-Query Parallel Field Ranking for image retrieval

Relevance feedback image retrieval is an effective scheme bridging the gap between low-level features and high-level concepts. It is essentially a multiquery ranking problem where the user submitted image and provided positive examples are considered as queries. Most of the existing approaches either merge the multiple queries into a single query or consider them independently, and then the geo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012