Dosimetry modeling of inhaled formaldehyde: comparisons of local flux predictions in the rat, monkey, and human nasal passages.
نویسندگان
چکیده
Formaldehyde-induced nasal squamous cell carcinomas in rats and squamous metaplasia in rats and rhesus monkeys occur in specific regions of the nose with species-specific distribution patterns. Experimental approaches addressing local differences in formaldehyde uptake patterns and dose are limited by the resolution of dissection techniques used to obtain tissue samples and the rapid metabolism of absorbed formaldehyde in the nasal mucosa. Anatomically accurate, 3-dimensional computational fluid dynamics models of F344 rat, rhesus monkey, and human nasal passages were used to estimate and compare regional inhaled formaldehyde uptake patterns predicted among these species. Maximum flux values, averaged over a breath, in nonsquamous epithelium were estimated to be 2620, 4492, and 2082 pmol/(mm(2)-h-ppm) in the rat, monkey, and human respectively. Flux values predicted in sites where cell proliferation rates were measured as similar in rats and monkeys were also similar, as were fluxes predicted in a region of high tumor incidence in the rat nose and the anterior portion of the human nose. Regional formaldehyde flux estimates are directly applicable to clonal growth modeling of formaldehyde carcinogenesis to help reduce uncertainty in human cancer risk estimates.
منابع مشابه
Dosimetry modeling of inhaled formaldehyde: binning nasal flux predictions for quantitative risk assessment.
Interspecies extrapolations of tissue dose and tumor response have been a significant source of uncertainty in formaldehyde cancer risk assessment. The ability to account for species-specific variation of dose within the nasal passages would reduce this uncertainty. Three-dimensional, anatomically realistic, computational fluid dynamics (CFD) models of nasal airflow and formaldehyde gas transpo...
متن کاملDosimetry modeling of inhaled formaldehyde: the human respiratory tract.
Formaldehyde (HCHO), which has been shown to be a nasal carcinogen in rats and mice, is used widely and extensively in various manufacturing processes. Studies in rhesus monkeys suggest that the lower respiratory tract may be at risk and some epidemiologic studies have reported an increase in lung cancer associated with HCHO; other studies have not. Thus, an assessment of possible human risk to...
متن کاملBiologically motivated computational modeling: contribution to risk assessment.
The article highlighted in this issue is ‘‘Human Respiratory Tract Cancer Risks of Inhaled Formaldehyde: Dose Response Predictions Derived from Biologically Motivated ComputationalModelingofaCombinedRodent andHuman Dataset,’’ by Rory Conolly, Julia Kimbell, Derek Janszen, Paul Schlosser, Darin Kalisak, Julian Preston, and Frederick Miller. In the featured article, Conolly et al. describe the de...
متن کاملComputational fluid dynamics simulations of inhaled nano- and microparticle deposition in the rhesus monkey nasal passages.
Anatomically accurate computational fluid dynamics (CFD) models of the nasal passages of an infant (6 months old, 1.3 kg) and adult (7 years old, 11.9 kg) rhesus monkey were used to predict nasal deposition of inhaled nano- and microparticles. Steady-state, inspiratory airflow simulations were conducted at flow rates equal to 100, 200 and 300% of the estimated minute volume for resting breathin...
متن کاملAirflow, gas deposition, and lesion distribution in the nasal passages.
The nasal passages of laboratory animals and man are complex, and lesions induced in the delicate nasal lining by inhaled air pollutants vary considerably in location and nature. The distribution of nasal lesions is generally a consequence of regional deposition of the inhaled material, local tissue susceptibility, or a combination of these factors. Nasal uptake and regional deposition are are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 64 1 شماره
صفحات -
تاریخ انتشار 2001