Multigene family of ribosomal DNA in Drosophila melanogaster reveals contrasting patterns of homogenization for IGS and ITS spacer regions. A possible mechanism to resolve this paradox.
نویسندگان
چکیده
The multigene family of rDNA in Drosophila reveals high levels of within-species homogeneity and between-species diversity. This pattern of mutation distribution is known as concerted evolution and is considered to be due to a variety of genomic mechanisms of turnover (e.g., unequal crossing over and gene conversion) that underpin the process of molecular drive. The dynamics of spread of mutant repeats through a gene family, and ultimately through a sexual population, depends on the differences in rates of turnover within and between chromosomes. Our extensive molecular analysis of the intergenic spacer (IGS) and internal transcribed spacer (ITS) spacer regions within repetitive rDNA units, drawn from the same individuals in 10 natural populations of Drosophila melanogaster collected along a latitudinal cline on the east coast of Australia, indicates a relatively fast rate of X-Y and X-X interchromosomal exchanges of IGS length variants in agreement with a multilineage model of homogenization. In contrast, an X chromosome-restricted 24-bp deletion in the ITS spacers is indicative of the absence of X-Y chromosome exchanges for this region that is part of the same repetitive rDNA units. Hence, a single lineage model of homogenization, coupled to drift and/or selection, seems to be responsible for ITS concerted evolution. A single-stranded exchange mechanism is proposed to resolve this paradox, based on the role of the IGS region in meiotic pairing between X and Y chromosomes in D. melanogaster.
منابع مشابه
Patterns of variation in the intergenic spacers of ribosomal DNA in Drosophila melanogaster support a model for genetic exchanges during X-Y pairing.
Detailed analysis of variation in intergenic spacer (IGS) and internal transcribed spacer (ITS) regions of rDNA drawn from natural populations of Drosophila melanogaster has revealed contrasting patterns of homogenization although both spacers are located in the same rDNA unit. On the basis of the role of IGS regions in X-Y chromosome pairing, we proposed a mechanism of single-strand exchanges ...
متن کاملComplete sequences of the rRNA genes of Drosophila melanogaster.
In this, the first of three papers, we present the sequence of the ribosomal RNA (rRNA) genes of Drosophila melanogaster. The gene regions of D. melanogaster rDNA encode four individual rRNAs: 18S (1,995 nt), 5.8S (123 nt), 2S (30 nt), and 28S (3,945 nt). The ribosomal DNA (rDNA) repeat of D. melanogaster is AT rich (65.9% overall), with the spacers being particularly AT rich. Analysis of DNA s...
متن کاملNucleotide variation of the duplicated amylase genes in Drosophila kikkawai.
We examined levels and patterns of the nucleotide polymorphism of the Amylase genes with a head-to-head duplication in Drosophila kikkawai. The levels of variation in D. kikkawai were comparable to those in Drosophila melanogaster. Tajima's test, Fu and Li's test, HKA test, and MK test did not show significant departure from neutrality. We found an excess of replacement changes in the within-lo...
متن کاملMolecular phylogeny of the family Araceae as inferred from the nuclear ribosomal ITS data
The internal transcribed spacer regions of nuclear ribosomal DNA are widely used to infer phylogenetic relationships in plants. In this study, it was obtained the ITS sequences from 24 samples of Araceae in Iran, representing 3 genera: Arum L., Biarum Schott. and Eminium (Blume) Schott. Phylogenetic analyses were conducted by Bayesian inference and maximum Parsimony methods. Cladistic analysis ...
متن کاملThe Phylogeny of Calligonum and Pteropyrum (Polygonaceae) Based on Nuclear Ribosomal DNA ITS and Chloroplast trnL-F Sequences
This study represents phylogenetic analyses of two woody polygonaceous genera Calligonum and Pteropyrum using both chloroplast fragment (trnL-F) and the nuclear ribosomal internal transcribed spacer (nrDNA ITS) sequence data. All inferred phylogenies using parsimony and Bayesian methods showed that Calligonum and Pteropyrum are both monophyletic and closely related taxa. They have no affinity w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 149 1 شماره
صفحات -
تاریخ انتشار 1998