Poisson Summation Formula for the Space of Functionals

نویسندگان

  • Takashi NITTA
  • Tomoko OKADA
چکیده

In our last work, we formulate a Fourier transformation on the infinitedimensional space of functionals. Here we first calculate the Fourier transformation of infinite-dimensional Gaussian distribution exp ( −πξ ∞ −∞ α 2(t)dt ) for ξ ∈ C with Re(ξ) > 0, α ∈ L2(R), using our formulated Feynman path integral. Secondly we develop the Poisson summation formula for the space of functionals, and define a functional Zs, s ∈ C, the Feynman path integral of that corresponds to the Riemann zeta function in the case Re(s) > 1. 0. Introduction Feynman([F-H]) used the concept of his path integral for physical quantizations. The word ′′physical quantizations′′ has two meanings : one is for quantum mechanics and the other is for quantum field theory. We usually use the same word ′′Feynman path integral′′. However the meanings included in ′′Feynman path integral′′ are two sides, according to the above. One is of quantum mechanics and the other is of quantum field theory. The first Feynman path integral corresponds to a study of functional analysis on the space of functions. For functional analysis, there exist many works from standard analysis and nonstandard analysis. However an approach has been hard from standard analysis or nonstandard analysis to study the space of ′′functionals′′ associating with the second Feynman path integral. In our last paper([N-O2]), we defined a delta functional δ and an infinitesimal Fourier transformation F in the space of functionals as one of generalizations for Kinoshita’s infinitesimal Fourier transformation in the space of functions. Historically, in 1962, Gaishi Takeuchi([T]) introduced an infinitesimal δfunction for the space of functions under nonstandard analysis. In 1988, 1990, Kinoshita([K1],[K2]) defined an infinitesimal Fourier transformation for the space of functions. Nitta and Okada([N-O1],[N-O2]) defined, for funtionals, an infinitesimal Fourier transformation, using a concept of double infinitesimal, and calculated the infinitesimal Fourier transformation for two typical examples. The main idea is to use the concept of double infinitesimals and putting standard parts twice st(st( . )). In our theory, the infinitesimal Fourier transformation of δ, δ, ... , and √ δ, ... can be calculated as constant functionals, 1, infinite, ... , and infinitesimal, ... . Now let H be an even infinite number in ∗R, and L be an infinitesimal lattice

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

– Ocone Formula and Poisson Functionals

In this paper we first prove a Clark–Ocone formula for any bounded measurable functional on Poisson space. Then using this formula, under some conditions on the intensity measure of Poisson random measure, we prove a variational representation formula for the Laplace transform of bounded Poisson functionals, which has been conjectured by Dupuis and Ellis [A Weak Convergence Approach to the Theo...

متن کامل

Conditional calculus on Poisson space and enlargement of filtration

Abstract We obtain sufficient conditions for the existence of conditional densities of functionals of the Poisson process, and expressions of these densities via the Malliavin calculus on Poisson space. These results are applied to enlargement of filtrations on Poisson space with explicit examples of computations via the Clark formula which is presented as a consequence of the Itô formula and t...

متن کامل

Distribution-valued Iterated Gradient and Chaotic Decompositions of Poisson Jump times Functionals

We deene a class of distributions on Poisson space which allows to iterate a modiication of the gradient of 1]. As an application we obtain, with relatively short calculations, a formula for the chaos expansion of functionals of jump times of the Poisson process.

متن کامل

Analogues of Euler and Poisson summation formulae

Abstract. Euler–Maclaurin and Poisson analogues of the summations ∑a<n≤b χ(n) f (n), ∑a<n≤b d(n) f (n), ∑a<n≤b d(n)χ(n) f (n) have been obtained in a unified manner, where (χ(n)) is a periodic complex sequence; d(n) is the divisor function and f (x) is a sufficiently smooth function on [a,b]. We also state a generalised Abel’s summation formula, generalised Euler’s summation formula and Euler’s...

متن کامل

Equivalence of K-functionals and modulus of smoothness for fourier transform

In Hilbert space L2(Rn), we prove the equivalence between the mod-ulus of smoothness and the K-functionals constructed by the Sobolev space cor-responding to the Fourier transform. For this purpose, Using a spherical meanoperator.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004