Reconstitution of the cytoplasmic interaction between phospholamban and Ca(2+)-ATPase of cardiac sarcoplasmic reticulum.

نویسندگان

  • Yoshihiro Kimura
  • Makoto Inui
چکیده

Phospholamban (PLN) reversibly inhibits the Ca(2+)-ATPase of cardiac sarcoplasmic reticulum (SERCA2a) through a direct protein-protein interaction, playing a pivotal role in the regulation of intracellular Ca(2+) in heart muscle cells. The interaction between PLN and SERCA2a occurs at multiple sites within the cytoplasmic and membrane domains. Here, we have reconstituted the cytoplasmic protein-protein interaction using bacterially expressed fusion proteins of the cytoplasmic domain of PLN and the long cytoplasmic loop of SERCA2a. We have developed two methods to evaluate the binding of the fusion proteins, one with glutathione-Sepharose beads and the other with a 96-well plate. Essentially the same results were obtained by the two methods. The affinity of the binding (K(D)) was 0.70 microM. The association was inhibited by cAMP-dependent phosphorylation of the PLN fusion protein and by usage of anti-PLN monoclonal antibody. It was also diminished by substitution at the phosphorylation site of PLN of Ser(16) to Asp. These results suggest that PLN can bind SERCA2a in the absence of the membrane domains and that the modifications of the cytoplasmic domain of PLN that activate SERCA2a parallel the disruption of the association between the two fusion proteins. It has been shown that the removal of PLN inhibition of SERCA2a rescues cardiac function and morphology in the mouse dilated cardiomyopathy model. Our assay system can be applied to the screening of novel inotropic agents that remove the inhibition of SERCA2a by PLN, improving the relaxation as well as the contractility of the failing heart.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional reconstitution of the cardiac sarcoplasmic reticulum Ca2(+)-ATPase with phospholamban in phospholipid vesicles.

The Ca2(+)-ATPase in cardiac sarcoplasmic reticulum (SR) is under regulation by phospholamban, an oligomeric proteolipid. To determine the molecular mechanism by which phospholamban regulates the Ca2(+)-ATPase, a reconstitution system was developed, using a freeze-thaw sonication procedure. The best rates of Ca2+ uptake (700 nmol/min/mg reconstituted vesicles compared with 800 nmol/min/mg SR ve...

متن کامل

Molecular mechanism of regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum. Effects of synthetic phospholamban peptides on Ca2+ pump ATPase.

The molecular mechanism of the regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum was examined using synthetic peptides of phospholamban and purified Ca2+ pump ATPase from cardiac sarcoplasmic reticulum. The phospholamban monomer of 52 amino acid residues contains two distinct domains, the cytoplasmic (amino acids 1-30) and the transmembrane (amino acids 31-52) do...

متن کامل

Purified, reconstituted cardiac Ca2+-ATPase is regulated by phospholamban but not by direct phosphorylation with Ca2+/calmodulin-dependent protein kinase.

Regulation of calcium transport by sarcoplasmic reticulum provides increased cardiac contractility in response to beta-adrenergic stimulation. This is due to phosphorylation of phospholamban by cAMP-dependent protein kinase or by calcium/calmodulin-dependent protein kinase, which activates the calcium pump (Ca2+-ATPase). Recently, direct phosphorylation of Ca2+-ATPase by calcium/calmodulin-depe...

متن کامل

Locating phospholamban in co-crystals with Ca(2+)-ATPase by cryoelectron microscopy.

Phospholamban (PLB) is responsible for regulating Ca(2+) transport by Ca(2+)-ATPase across the sarcoplasmic reticulum of cardiac and smooth muscle. This regulation is coupled to beta-adrenergic stimulation, and dysfunction has been associated with end-stage heart failure. PLB appears to directly bind to Ca(2+)-ATPase, thus slowing certain steps in the Ca(2+) transport cycle. We have determined ...

متن کامل

Chronic Phospholamban–Sarcoplasmic Reticulum Calcium ATPase Interaction Is the Critical Calcium Cycling Defect in Dilated Cardiomyopathy

Dilated cardiomyopathy and end-stage heart failure result in multiple defects in cardiac excitation-contraction coupling. Via complementation of a genetically based mouse model of dilated cardiomyopathy, we now provide evidence that progressive chamber dilation and heart failure are dependent on a Ca2+ cycling defect in the cardiac sarcoplasmic reticulum. The ablation of a muscle-specific sarco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 61 3  شماره 

صفحات  -

تاریخ انتشار 2002