Embryonic stem cells attenuate myocardial dysfunction and inflammation after surgical global ischemia via paracrine actions.

نویسندگان

  • Paul R Crisostomo
  • Aaron M Abarbanell
  • Meijing Wang
  • Tim Lahm
  • Yue Wang
  • Daniel R Meldrum
چکیده

Stem cell treatment may positively influence recovery and inflammation after shock by multiple mechanisms, including the paracrine release of protective growth factors. Embryonic stem cells (ESCs) are understudied and may have greater protective power than adult bone marrow stem cells (BMSCs). We hypothesized that ESC paracrine protective mechanisms in the heart (decreased injury by enhanced growth factor-mediated reduction of proinflammatory cytokines) would be superior to the paracrine protective mechanisms of the adult stem cell population in a model of surgically induced global ischemia. Adult Sprague-Dawley rat hearts were isolated and perfused via Langendorff model. Hearts were subjected to 25 min of warm global ischemia and 40 min of reperfusion and were randomly assigned into one of four groups: 1) vehicle treated; 2) BMSC or ESC preischemic treatment; 3) BMSC or ESC postischemic treatment; and 4) BMSC- or ESC-conditioned media treatment. Myocardial function was recorded, and hearts were analyzed for expression of tissue cytokines and growth factors (ELISA). Additionally, ESCs and BMSCs in culture were assessed for growth factor production (ELISA). ESC-treated hearts demonstrated significantly greater postischemic recovery of function (left ventricular developed pressure, end-diastolic pressure, and maximal positive and negative values of the first derivative of pressure) than BMSC-treated hearts or controls at end reperfusion. ESC-conditioned media (without cells) also conferred cardioprotection at end reperfusion. ESC-infused hearts demonstrated increased VEGF and IL-10 production compared with BMSC hearts. ESC hearts also exhibited decreased proinflammatory cytokine expression compared with MSC hearts. Moreover, ESCs in cell culture demonstrated greater pluripotency than MSCs. ESC paracrine protective mechanisms in surgical ischemia are superior to those of adult stem cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sca-1+ Cardiac Stem Cells Mediate Acute Cardioprotection via Paracrine Factor SDF-1 following Myocardial Ischemia/Reperfusion

BACKGROUND Cardiac stem cells (CSCs) promote myocardial recovery following ischemia through their regenerative properties. However, little is known regarding the implication of paracrine action by CSCs in the setting of myocardial ischemia/reperfusion (I/R) injury although it is well documented that non-cardiac stem cells mediate cardioprotection via the production of paracrine protective facto...

متن کامل

Are Stem Cells the next Therapeutic Tool for Heart Repair?

Cardiovascular disease remains the leading cause of morbidity and mortality in the United States and Europe. In recent years, the understanding that regenerative processes exist at the level of the myocardium, has placed stem cell research at center stage in cardiology. A stem cell is a cell that has the ability to divide (self replicate) for indefinite periods often throughout the life of the ...

متن کامل

Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling.

In this study, we hypothesized that bone marrow stem cells (BMSCs) protect ischemic myocardium through paracrine effects that can be further augmented with preconditioning. In in vitro experiments, cell survival factors such as Akt and eNOS were significantly increased in BMSCs following anoxia. In the second series of experiments following coronary ligation in mice, left ventricles were random...

متن کامل

Apelin enhances cardiac neovascularization after myocardial infarction by recruiting aplnr+ circulating cells.

RATIONALE Neovascularization stimulated by local or recruited stem cells after ischemia is a key process that salvages damaged tissue and shows similarities with embryonic vascularization. Apelin receptor (Aplnr) and its endogenous ligand apelin play an important role in cardiovascular development. However, the role of apelin signaling in stem cell recruitment after ischemia is unknown. OBJEC...

متن کامل

Suppression of inflammatory damage to the brain after global cerebral ischemia by transplanted mesenchymal stem cells via secretion of TSG-6

Objective: Numerous studies have shown that bone marrow-derived mesenchymal stem cells (MSCs) enhance neurological recovery after cerebral ischemia. However, the mechanisms are still not clear. The present study aimed to investigate the beneficial effects of MSCs on global cerebral ischemia induced by cardiac arrest (CA) and the underlying mechanisms. Methods: Rats subjected to asphyxial CA wer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 295 4  شماره 

صفحات  -

تاریخ انتشار 2008