Ramanujan subspace pursuit for signal periodic decomposition
نویسندگان
چکیده
The period estimation and periodic decomposition of a signal are the long-standing problems in the field of signal processing and biomolecular sequence analysis. To address such problems, we introduce the Ramanujan subspace pursuit (RSP) based on the Ramanujan subspace. As a greedy iterative algorithm, the RSP can uniquely decompose any signal into a sum of exactly periodic components, by selecting and removing the most dominant periodic component from the residual signal in each iteration. In the RSP, a novel periodicity metric is derived based on the energy of the exactly periodic component obtained by orthogonally projecting the residual signal into the Ramanujan subspace, and is then used to select the most dominant periodic component in each iteration. To reduce the computational cost of the RSP, we also propose the fast RSP (FRSP) based on the relationship between the periodic subspace and the Ramanujan subspace, and based on the maximum likelihood estimation of the energy of the periodic component in the periodic subspace. The fast RSP has a lower computational cost and can decompose a signal of length N into the sum of K exactly periodic components in O(KN logN). In addition, our results show that the RSP outperforms the current algorithms for period estimation. Index Terms Period estimation, periodic decomposition, period detection, periodic signals, Ramanujan subspace.
منابع مشابه
A Novel Noise Reduction Method Based on Subspace Division
This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...
متن کاملApplication of Novel Subspace Pursuit on Guided Wave NDT Signal Decomposition and Recognition Based on Improved Evolutionary Algorithm
In this study, we propose and apply a kind of novel subspace pursuit method to guided wave Non-Destructive Testing (NDT) signal decomposition and recognition to reduce the complexity of subspace pursuit. Modified Differential Evolution Algorithm (MDEA) is applied to the Modified Subspace Pursuit (MSP) by choosing chirplet function as match atoms. A steel pipe with hole and notch is detected by ...
متن کاملA Novel Noise Reduction Method Based on Subspace Division
This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...
متن کاملOrthogonal, exactly periodic subspace decomposition
The detection and estimation of machine vibration multiperiodic signals of unknown periods in white Gaussian noise is investigated. New estimates for the subsignals (signals making up the received signal) and their periods are derived using an orthogonal subspace decomposition approach. The concept of exactly periodic signals is introduced. This in turn simplifies and enhances the understanding...
متن کاملFrequency Domain Identiication, Subspace Methods and Periodic Excitation
Recent frequency domain identiication algorithms based on subspace based techniques are discussed. The algorithms construct a state-space model by means of extraction of the signal subspace from a matrix constructed from frequency data. A singular value decomposition plays a key part in the subspace extraction. The subspace methods are non-iterative methods in contrast to classical iterative pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1512.08112 شماره
صفحات -
تاریخ انتشار 2015