The Reversing Number of a Digraph

نویسندگان

  • Jean-Pierre Barthélemy
  • Olivier Hudry
  • Garth Isaak
  • Fred S. Roberts
  • Barry A. Tesman
چکیده

A minimum reversing set of a digraph is a smallest sized set of arcs which when reversed makes the digraph acyclic. We investigate a related issue: Given an acyclic digraph D, what is the size of a smallest tournataent T which has the arc set of D as a minimum reversing set? We show that such a T always exists and define the reversing number ofan acyclic digraph to be the number of vertices in T minus the number of vertices in D. We also derive bounds and exact values of the reversing number for certain classes of acyclic digraphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Reversing Number of a Digraph; A Disjoint Union of Directed Stars

A minimum feedback arc set of a digraph is a smallest sized set of arcs that when reversed makes the resulting digraph acyclic. Given an acyclic digraph D, we seek a smallest sized tournament T that has D as a minimum feedback arc set. The reversing number of a digraph was defined by Barthélemy et. al. to be r(D) = |V (T )| − |V (D)|. We will completely determine the reversing number for a disj...

متن کامل

A note on the Roman domatic number of a digraph

Roman dominating function} on a digraph $D$ with vertex set $V(D)$ is a labeling$fcolon V(D)to {0, 1, 2}$such that every vertex with label $0$ has an in-neighbor with label $2$. A set ${f_1,f_2,ldots,f_d}$ ofRoman dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vin V(D)$,is called a {em Roman dominating family} (of functions) on $D$....

متن کامل

The Roman domination and domatic numbers of a digraph

A Roman dominating function (RDF) on a digraph $D$ is a function $f: V(D)rightarrow {0,1,2}$ satisfying the condition that every vertex $v$ with $f(v)=0$ has an in-neighbor $u$ with $f(u)=2$. The weight of an RDF $f$ is the value $sum_{vin V(D)}f(v)$. The Roman domination number of a digraph $D$ is the minimum weight of an RDF on $D$. A set ${f_1,f_2,dots,f_d}$ of Roman dominating functions on ...

متن کامل

The Italian domatic number of a digraph

An {em Italian dominating function} on a digraph $D$ with vertex set $V(D)$ is defined as a function$fcolon V(D)to {0, 1, 2}$ such that every vertex $vin V(D)$ with $f(v)=0$ has at least two in-neighborsassigned 1 under $f$ or one in-neighbor $w$ with $f(w)=2$. A set ${f_1,f_2,ldots,f_d}$ of distinctItalian dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vi...

متن کامل

Dominance in a Cayley digraph and in its reverse

Let D be a digraph. Its reverse digraph, D−1, is obtained by reversing all arcs of D. We show that the domination numbers of D and D−1 can be different if D is a Cayley digraph. The smallest groups admitting Cayley digraphs with this property are the alternating group A4 and the dihedral group D6, both on 12 elements. Then, for each n ≥ 6 we find a Cayley digraph D on the dihedral group Dn such...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 60  شماره 

صفحات  -

تاریخ انتشار 1995