Uniform Approximation of Singularly Perturbed Reaction-Diffusion Problems by the Finite Element Method on a Shishkin Mesh

نویسندگان

  • Christos Xenophontos
  • Scott R. Fulton
چکیده

We consider the numerical approximation of singularly perturbed reaction-diffusion problems over twodimensional domains with smooth boundary. Using the h version of the finite element method over appropriately designed piecewise uniform (Shishkin) meshes, we are able to uniformly approximate the solution at a quasi-optimal rate. The results of numerical computations showing agreement with the analysis are also presented. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 89–111, 2003

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical method for a system of second order singularly perturbed turning point problems

In this paper, a parameter uniform numerical method based on Shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. It is assumed that both equations have a turning point at the same point. An appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on t...

متن کامل

A Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts

In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...

متن کامل

Uniformly Convergent Finite Element Methods for Singularly Perturbed Elliptic Boundary Value Problems I: Reaction-diffusion Type

{ We consider the bilinear nite element method on a Shishkin mesh for the singularly perturbed elliptic boundary value problem ?" 2 (@ 2 u @x 2 + @ 2 u @y 2) + a(x; y)u = f(x; y) in two space dimensions. By using a very sophisticated asymptotic expansion of Han et al. 11] and the technique we used in 17], we prove that our method achieves almost second-order uniform convergence rate in L 2-norm...

متن کامل

A first-order system Petrov–Galerkin discretization for a reaction–diffusion problem on a fitted mesh

We consider the numerical solution, by a Petrov–Galerkin finite-element method, of a singularly perturbed reaction–diffusion differential equation posed on the unit square. In Lin & Stynes (2012, A balanced finite element method for singularly perturbed reaction-diffusion problems. SIAM J. Numer. Anal., 50, 2729–2743), it is argued that the natural energy norm, associated with a standard Galerk...

متن کامل

Superconvergence of Conforming Finite Element for Fourth-Order Singularly Perturbed Problems of Reaction Diffusion Type in 1D

We consider conforming finite element approximation of fourth-order singularly perturbed problems of reaction diffusion type. We prove superconvergence of standard C1 finite element method of degree p on a modified Shishkin mesh. In particular, a superconvergence error bound of ( N−1ln(N + 1))p in a discrete energy norm is established. The error bound is uniformly valid with respect to the sing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002