Glia, neurons, and axon pathfinding during optic chiasm development.

نویسندگان

  • C A Mason
  • D W Sretavan
چکیده

The importance of vision in the behavior of animals, from invertebrates to primates, has led to a good deal of interest in how projection neurons in the retina make specific connections with targets in the brain. Recent research has focused on the cellular interactions occurring between retinal ganglion cell (RGC) axons and specific glial and neuronal populations in the embryonic brain during formation of the mouse optic chiasm. These interactions appear to be involved both in determining the position of the optic chiasm on the ventral diencephalon (presumptive hypothalamus) and in ipsilateral and contralateral RGC axon pathfinding, development events fundamental to binocular vision in the adult animal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perturbations of MicroRNA Function in Mouse Dicer Mutants Produce Retinal Defects and Lead to Aberrant Axon Pathfinding at the Optic Chiasm

BACKGROUND During development axons encounter a variety of choice points where they have to make appropriate pathfinding decisions. The optic chiasm is a major decision point for retinal ganglion cell (RGC) axons en route to their target in order to ensure the correct wiring of the visual system. MicroRNAs (miRNAs) belong to the class of small non-coding RNA molecules and have been identified a...

متن کامل

Crossed and uncrossed retinal axons respond differently to cells of the optic chiasm midline in vitro

In mouse, retinal axon divergence takes place within a cellular specialization localized at the midline of the optic chiasm. To test whether the cells in this locus present cues for differential retinal axon growth, retinal explants were cocultured with cells dissociated from the chiasmatic midline, both taken from day 14-15 embryos, during the principal period of retinal axon divergence. Compa...

متن کامل

Retinal ganglion cell axon progression from the optic chiasm to initiate optic tract development requires cell autonomous function of GAP-43.

Pathfinding mechanisms underlying retinal ganglion cell (RGC) axon growth from the optic chiasm into the optic tract are unknown. Previous work has shown that mouse embryos deficient in GAP-43 have an enlarged optic chiasm within which RGC axons were reportedly stalled. Here we have found that the enlarged chiasm of GAP-43 null mouse embryos appears subsequent to a failure of the earliest RGC a...

متن کامل

Randomized retinal ganglion cell axon routing at the optic chiasm of GAP-43-deficient mice: association with midline recrossing and lack of normal ipsilateral axon turning.

During mammalian development, retinal ganglion cell (RGC) axons from nasal retina cross the optic chiasm midline, whereas temporal retina axons do not and grow ipsilaterally, resulting in a projection of part of the visual world onto one side of the brain while the remaining part is represented on the opposite side. Previous studies have shown that RGC axons in GAP-43-deficient mice initially f...

متن کامل

Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43

GAP-43 has been termed a "growth" or "plasticity" protein because it is expressed at high levels in neuronal growth cones during development and during axonal regeneration. By homologous recombination, we generated mice lacking GAP-43. The mice die in the early postnatal period. GAP-43-deficient retinal axons remain trapped in the chiasm for 6 days, unable to navigate past this midline decision...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current opinion in neurobiology

دوره 7 5  شماره 

صفحات  -

تاریخ انتشار 1997