Strontium clusters: Many-body potential, energetics, and structural transitions
نویسندگان
چکیده
A many-body potential for strontium clusters is developed with parameters fitted to the energy surface of strontium clusters containing up to ten atoms calculated within the density functional theory in the generalized gradient approximation. Structure and energetics of the most stable cluster isomers with up to 63 atoms are obtained with genetic algorithms. Additionally, the high resolution mass spectrum of strontium clusters up to Sr96 at finite temperature is provided. Several thermodynamic properties are studied under the many-body potential as a function of temperature. It is found that stability patterns, indicating how stable a cluster size is with respect to its neighboring sizes, change significantly with temperature. This behavior is due to structural transitions of the strontium clusters that occur at finite temperatures. A comparison with the experimental mass abundance indicates that only the structures above 400 K were observed experimentally. Very prominent magic numbers are predicted at 34 and 61. © 2001 American Institute of Physics. @DOI: 10.1063/1.1384454#
منابع مشابه
A STUDY OF SMALL VACANCY CLUSTERS IN IRON USING MANY BODY POTENTIAL
Computer simulation techniques are employed to obtain binding energies of 2,3 and 4 vacancy clusters in a -iron using the Finnis Sinclair many body potential. The results are compared with earlier pair potential calculations. The many body potential is found to be quite successful in simulating vacancy clusters
متن کاملبررسی ابتدا به ساکن خواص ساختاری، مغناطیسی و الکترونی نانوخوشههای مس و نقره و آلیاژ آنها با یک اتم پالادیم
In this paper, the structural, magnetic, and electronic properties of two- to nine-atom copper and silver clusters and their alloys with one palladium atom are investigated by using full-potential all-electron density functional computations. After calculating minimized energy of several structural isomers of every nanocluster, it is argued that the small size nanoclusters (up to size of 6), ...
متن کاملNUMERICAL SIMULATIONS OF THE PHASE TRANSITIONS IN CLUSTERS
We have studied the phase transitions in atomic clusters by molecular dynamics simulation, assuming Lennard-Jones interatomic pair potential. Calculations are performed by DAP parallel computer. The results are analyzed by simulating their orientational distribution plots (dot-plot), and neutron diffraction patterns. It is shown that all the main features of the bulk phase transitions are e...
متن کاملThe energetics and structure of nickel clusters: Size dependence
The energetics of nickel clusters over a broad size range are explored within the context of the many-body potentials obtained via the embedded atom method. Unconstrained local minimum energy configurations are found for single crystal clusters consisting of various truncations of the cube or octahedron, with and without ( 110) faces, as well as some monotwinnings of these. We also examine mult...
متن کاملGCMC Glauber dynamics study for structural transitions in YBCOx (0<x<1), HTc system
We have chosen an Ising ASYNNNI (ASYmmetric Next Nearest Neighbor Interaction) model under a grand canonical regime to investigate structural phase transition from a high symmetric tetragonal (Tet) to a low symmetric orthorhombic in YBa2Cu3O6+x , 0<x<1, HTc system. Ordering process for absorbed oxygens from an external gas bath into the basal plane of the layered system is studied by Monte C...
متن کامل