Semi-Supervised Recognition of Sarcasm in Twitter and Amazon
نویسندگان
چکیده
Sarcasm is a form of speech act in which the speakers convey their message in an implicit way. The inherently ambiguous nature of sarcasm sometimes makes it hard even for humans to decide whether an utterance is sarcastic or not. Recognition of sarcasm can benefit many sentiment analysis NLP applications, such as review summarization, dialogue systems and review ranking systems. In this paper we experiment with semisupervised sarcasm identification on two very different data sets: a collection of 5.9 million tweets collected from Twitter, and a collection of 66000 product reviews from Amazon. Using the Mechanical Turk we created a gold standard sample in which each sentence was tagged by 3 annotators, obtaining F-scores of 0.78 on the product reviews dataset and 0.83 on the Twitter dataset. We discuss the differences between the datasets and how the algorithm uses them (e.g., for the Amazon dataset the algorithm makes use of structured information). We also discuss the utility of Twitter #sarcasm hashtags for the task.
منابع مشابه
Semi-Supervised Recognition of Sarcastic Sentences in Twitter and Amazon
Sarcasm is a form of speech act in which the speakers convey their message in an implicit way. The inherently ambiguous nature of sarcasm sometimes makes it hard even for humans to decide whether an utterance is sarcastic or not. Recognition of sarcasm can benefit many sentiment analysis NLP applications, such as review summarization, dialogue systems and review ranking systems. In this paper w...
متن کاملICWSM - A Great Catchy Name: Semi-Supervised Recognition of Sarcastic Sentences in Online Product Reviews
Sarcasm is a sophisticated form of speech act widely used in online communities. Automatic recognition of sarcasm is, however, a novel task. Sarcasm recognition could contribute to the performance of review summarization and ranking systems. This paper presents SASI, a novel Semi-supervised Algorithm for Sarcasm Identification that recognizes sarcastic sentences in product reviews. SASI has two...
متن کاملAutomatic Humor Classification on Twitter
Much has been written about humor and even sarcasm automatic recognition on Twitter. The task of classifying humorous tweets according to the type of humor has not been confronted so far, as far as we know. This research is aimed at applying classification and other NLP algorithms to the challenging task of automatically identifying the type and topic of humorous messages on Twitter. To achieve...
متن کاملPutting Sarcasm Detection into Context: The Effects of Class Imbalance and Manual Labelling on Supervised Machine Classification of Twitter Conversations
Sarcasm can radically alter or invert a phrase’s meaning. Sarcasm detection can therefore help improve natural language processing (NLP) tasks. The majority of prior research has modeled sarcasm detection as classification, with two important limitations: 1. Balanced datasets, when sarcasm is actually rather rare. 2. Using Twitter users’ self-declarations in the form of hashtags to label data, ...
متن کاملDetecting Sarcasm on Twitter: A Behavior Modeling Approach by Ashwin Rajadesingan A Thesis Presented in Partial Fulfillment of the Requirement for the Degree Master of Science Approved September 2014 by the Graduate Supervisory Committee: Huan Liu, Chair
Sarcasm is a nuanced form of language where usually, the speaker explicitly states the opposite of what is implied. Imbued with intentional ambiguity and subtlety, detecting sarcasm is a difficult task, even for humans. Current works approach this challenging problem primarily from a linguistic perspective, focussing on the lexical and syntactic aspects of sarcasm. In this thesis, I explore the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010