ON FACTORIZATION IN BLOCK MONOIDS FORMED BY {1, a} IN Zn

نویسندگان

  • SCOTT T. CHAPMAN
  • WILLIAM W. SMITH
چکیده

We consider the factorization properties of block monoids on Zn determined by subsets of the form Sa = {1, a}. We denote such a block monoid by Ba(n). In Section 2, we provide a method based on the division algorithm for determining the irreducible elements of Ba(n). Section 3 offers a method to determine the elasticity of Ba(n) based solely on the cross number. Section 4 applies the results of Section 3 to investigate the complete set of elasticities of Krull monoids with divisor class group Zn.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erdős-Zaks all divisor sets

Let Zn be the finite cyclic group of order n and S ⊆ Zn. We examine the factorization properties of the Block Monoid B(Zn, S) when S is constructed using a method inspired by a 1990 paper of Erdős and Zaks. For such a set S, we develop an algorithm in Section 2 to produce and order a set {Mi} i=1 which contains all the non-primary irreducible Blocks (or atoms) of B(Zn, S). This construction yie...

متن کامل

On Factorization Properties of Semi-Regular Congruence Monoids

If given n ∈ N and Γ, a multiplicatively closed subset of Zn, then the set HΓ = {n ∈ Z : x ∈ N : x + nZ ∈ Γ} ∪ {1} is a multiplicative submonoid of N0 known as a congruence monoid. Much work has been done to characterize the factorial (every element has unique factorization) and half-factorial (lengths of irreducible factorizations of an element remain constant) properties of such objects. Our ...

متن کامل

On Delta Sets and Their Realizable Subsets in Krull Monoids with Cyclic Class Groups

Let M be a commutative cancellative monoid. The set ∆(M), which consists of all positive integers which are distances between consecutive irreducible factorization lengths of elements in M , is a widely studied object in the theory of nonunique factorizations. If M is a Krull monoid with divisor class group Zn, then it is well-known that ∆(M) ⊆ {1, 2, . . . , n − 2}. Moreover, equality holds fo...

متن کامل

Factorization Properties of Congruence Monoids

Let n ∈ N, Γ ⊆ N and define Γn = {x ∈ Zn | x ∈ Γ} the set of residues of elements of Γ modulo n. If Γn is multiplicatively closed we may define the following submonoid of the naturals: HΓn = {x ∈ N | x = γ, γ ∈ Γn}∪{1} known as a congruence monoid (CM). Unlike the naturals, many CMs enjoy the property of non-unique factorization into irreducibles. This opens the door to the study of arithmetic ...

متن کامل

Factorization in Topological Monoids

We sketch a theory of divisibility and factorization in topological monoids, where finite products are replaced by convergent products. The algebraic case can then be viewed as the special case of discretely topologized topological monoids. We define the topological factorization monoid, a generalization of the factorization monoid for algebraic monoids, and show that it is always topologically...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002