Regulation of extrasynaptic 5-HT by serotonin reuptake transporter function in 5-HT-absorbing neurons underscores adaptation behavior in Caenorhabditis elegans.

نویسندگان

  • Gholamali Jafari
  • Yusu Xie
  • Andrey Kullyev
  • Bin Liang
  • Ji Ying Sze
چکیده

Serotonin [5-hydroxytryptamine (5-HT)]-absorbing neurons use serotonin reuptake transporter (SERT) to uptake 5-HT from extracellular space but do not synthesize it. While 5-HT-absorbing neurons have been identified in diverse organisms from Caenorhabditis elegans to humans, their function has not been elucidated. Here, we show that SERT in 5-HT-absorbing neurons controls behavioral response to food deprivation in C. elegans. The AIM and RIH interneurons uptake 5-HT released from chemosensory neurons and secretory neurons. Genetic analyses suggest that 5-HT secreted by both synaptic vesicles and dense core vesicles diffuse readily to the extrasynaptic space adjacent to the AIM and RIH neurons. Loss of mod-5/SERT function blocks the 5-HT absorption. mod-5/SERT mutants have been shown to exhibit exaggerated locomotor response to food deprivation. We found that transgenic expression of MOD-5/SERT in the 5-HT-absorbing neurons fully corrected the exaggerated behavior. Experiments of cell-specific inhibition of synaptic transmission suggest that the synaptic release of 5-HT from the 5-HT-absorbing neurons is not required for this behavioral modulation. Our data point to the role of 5-HT-absorbing neurons as temporal-spatial regulators of extrasynaptic 5-HT. Regulation of extrasynaptic 5-HT levels by 5-HT-absorbing neurons may represent a fundamental mechanism of 5-HT homeostasis, integrating the activity of 5-HT-producing neurons with distant targets in the neural circuits, and could be relevant to some actions of selective serotonin reuptake inhibitors in humans.

منابع مشابه

Mutations in the Caenorhabditis elegans serotonin reuptake transporter MOD-5 reveal serotonin-dependent and -independent activities of fluoxetine.

We isolated two mutants defective in the uptake of exogenous serotonin (5-HT) into the neurosecretory motor neurons of Caenorhabditis elegans. These mutants were hypersensitive to exogenous 5-HT and hyper-responsive in the experience-dependent enhanced slowing response to food modulated by 5-HT. The two allelic mutations defined the gene mod-5 (modulation of locomotion defective), which encodes...

متن کامل

The G-protein-coupled serotonin receptor SER-1 regulates egg laying and male mating behaviors in Caenorhabditis elegans.

Serotonin (5-HT) is a neuromodulator that regulates many aspects of animal behavior, including mood, aggression, sex drive, and sleep. In vertebrates, most of the behavioral effects of 5-HT appear to be mediated by G-protein-coupled receptors (GPCRs). Here, we show that SER-1 is the 5-HT GPCR responsible for the stimulatory effects of exogenous 5-HT in two sexually dimorphic behaviors of Caenor...

متن کامل

Getting beyond Prozac: A C. elegans approach

48 | 2010 | VOLUME 1 VANDERBILT REVIEWS | NEUROSCIENCE ©2010 Vanderbilt Brain Institute. All rights reserved. Current investigations of SERT regulation implicate several Ser/Thr kinases in modulation of both activity and localization, possibly in part through presynaptic receptor activity . Rodent models demonstrate the impact of a loss in SERT activity and SERT alleles on behavior 17 and are c...

متن کامل

Modifications of the serotonergic system in mice lacking serotonin transporters: an in vivo electrophysiological study.

The serotonin transporter (5-HTT) plays a key role in the regulation of serotonin (5-hydroxytryptamine, 5-HT) transmission in the pathophysiology and therapeutics of several psychiatric disorders. The mean spontaneous firing rate of midbrain dorsal raphe 5-HT neurons was recorded in chloral hydrate-anesthetized mice. The serotonin transporter (5-HTT), which plays a key role in the regulation of...

متن کامل

A genetic survey of fluoxetine action on synaptic transmission in Caenorhabditis elegans.

Fluoxetine is one of the most commonly prescribed medications for many behavioral and neurological disorders. Fluoxetine acts primarily as an inhibitor of the serotonin reuptake transporter (SERT) to block the removal of serotonin from the synaptic cleft, thereby enhancing serotonin signals. While the effects of fluoxetine on behavior are firmly established, debate is ongoing whether inhibition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 24  شماره 

صفحات  -

تاریخ انتشار 2011